Edge-odd Gracefulness of $\mathrm{P}_{\mathrm{M}} \Theta \mathrm{S}_{\mathrm{N}}$, for $\mathrm{M}=5,6,7,8$

Dr. A. Solairaju
Associate Professor of Mathematics
Jamal Mohamed College, Tiruchirapalli - 620020.
Tamil Nadu, India.
C. Vimala and A.Sasikala
Assistant Professors (SG), Department of Mathematics, Periyar Maniammai University, Vallam
Thanjavur - Post. Tamil Nadu, India.

Abstract

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $\quad \mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, \quad 2 \mathrm{q}-1\}$ so that induced map $\quad \mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2,3, \ldots$, ($2 \mathrm{k}-$ $1)\}$ defined by $\quad f_{+}(x) \equiv f(x, y)(\bmod 2 k)$, where the vertex x is incident with other vertex y and $\mathrm{k}=\max \{\mathrm{p}, \mathrm{q}\}$ makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of $P_{m} \Theta S_{m} m=5,6,7,8$ is obtained.

Keywords: Graceful Graph, Edge-odd graceful labeling, Edge-odd graceful graph

INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A.Solairaju, C.Vimala, A.Sasikala [2008] gracefulness of a spanning tree of the graph of Cartesian product of S_{m} and S_{n}, A. Solairaju et.al. [2010] that the cartesian product of path P_{2} and circuit C_{n} for all integer $n, S_{m, n}, C_{m} \Theta S_{n}$ for n is even and the crown graph $C_{3} \Theta P_{n}$ and $C_{3} \Theta 2 P_{n}$ are is edge-odd graceful. Here the edge-odd graceful labeling of $P_{m} \Theta S_{n}, m=5,6,7$, 8 is obtained.

Section II: Basic concept

In this section, the following definitions are first listed.
Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0,1,2, \ldots, m\}$ such that when each edge uv is assigned the label $|f(u)-f(v)|$ the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge - odd graceful graph [6]: A (p, q) connected graph is edge-odd graceful if there exists an injective map $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ so that induced $\operatorname{map} \mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ defined by $\mathrm{f}_{+}(\mathrm{x}) \equiv \Sigma \mathrm{f}(\mathrm{x}$, y) $(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $\mathrm{k}=\max \{\mathrm{p}, \mathrm{q}\}$ makes all the edges distinct and odd.

Section 3 - Edge-odd Gracefulness of $\mathbf{P}_{\mathrm{m}} \Theta$ $\mathrm{S}_{\mathrm{n}}, \mathrm{m}=\mathbf{5}, \mathbf{6}, 7,8$
 In this section edge-odd gracefulness of the fire - cracker graph $P_{m} \Theta S_{n}, m=5,6,7$, and 8 is obtained.

Definition 2.1: The graph $P_{m} \Theta S_{n}$ is a tree obtained from the path P_{m} by adding a star graph S_{n} to each of the pendant
vertices of P_{m}. It has $(2 n+m)$ vertices and $((2 n+m-1)$ edges.

Figure 1: Graph of $P_{m} \Theta S_{n}$
Lemma 2.2: The connected graph $P_{6} \Theta S_{n}$ is edge - odd graceful for $\mathrm{n}>1$.

Proof: The figure 2 is the graph of $P_{6} \Theta S_{n}$ with (2n+6) vertices and $(2 n+5)$ edges, with some arbitrary graceful labeling in vertices and edges.

Figure 2: Edge-odd gracefulness of $P_{6} \Theta S_{n}$

$$
\begin{aligned}
& \text { Define f: } \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\} \text { by } \\
& \mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=(2 \mathrm{i}-1), \text { for } \mathrm{i}=1,2, \ldots,(\mathrm{n}-1),(\mathrm{n}+1), \ldots, \\
& \quad(\mathrm{n}+5),(\mathrm{n}+7), \ldots,(2 \mathrm{n}+5) \\
& \mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=2 \mathrm{n}+11 ; \mathrm{f}\left(\mathrm{e}_{\mathrm{n}+6}\right)=2 \mathrm{n}-1 \quad[\text { Rule 1] }
\end{aligned}
$$

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by $f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k-1)$, where this sum run over all edges through v [Rule 2]

Thus the map f and the induced map f_{+}provide labels as odd numbers for edges with all distinct and also the labelings for vertex set has distinct values in $\{1,2, \ldots ., 2 \mathrm{k}-1)\}$. Hence the graph $\quad P_{6} \Theta S_{n}$ is edge-odd graceful.

Lemma 2.3: The connected graph $\mathrm{P}_{7} \Theta \mathrm{~S}_{\mathrm{n}}$ is edge - odd graceful for $\mathrm{n}>1$.

Proof: The figure 3 is the graph of $P_{7} \Theta S_{n}$ with ($2 n+7$) vertices and $(2 n+6)$ edges, with some arbitrary graceful labeling in vertices and edges.

Figure 3: Edge-odd gracefulness of $P_{7} \Theta S_{n}$
Define f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 q-1\}$ by
For $n \equiv 3,5(\bmod 8)$
$f\left(e_{i}\right)=(2 i-1)$, for $\mathrm{i}=1,2, \ldots,(n-1),(n+1), \ldots$,
$(\mathrm{n}+6),(\mathrm{n}+8), \ldots,(2 \mathrm{n}+6),(1)$
$f\left(e_{n}\right)=2 n+13 ; f\left(e_{n+7}\right)=2 n-1$
For $\mathrm{n} \equiv \mathbf{7 , 9}(\bmod 8)$
$f\left(e_{i}\right)=(2 i-1)$, for $i=1,2, \ldots,(2 n+6)$
Define $\mathrm{f}_{\mathrm{t}}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{\mathrm{t}}(\mathrm{v}) \equiv \sum \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k}-1)$, where this sum run over all edges through v (2)

Thus the map f and the induced map f_{+}provide labels as odd numbers for edges with all distinct and also the labelings for vertex set has distinct values in $\{1,2, \ldots .,(2 k-1)\}$. Hence the graph $\mathrm{P}_{7} \Theta \mathrm{~S}_{\mathrm{n}}$ is edge-odd graceful.

Lemma 2.3: The connected graphs $P_{8} \Theta S_{3}$ and $P_{8} \Theta S_{5}$ is edge - odd graceful.

Proof: The figure 4 and 5 is the connected graphs $P_{8} \Theta S_{3}$ and $P_{8} \Theta S_{5}$

Figure 4: Edge-odd gracefulness of $P_{8} \Theta S_{3}$

Figure 5: Edge-odd gracefulness of $\mathbf{P}_{\mathbf{8}} \Theta \mathrm{S}_{5}$

Lemma 2.4: The connected graph $P_{8} \Theta S_{n}$ is edge - odd graceful for odd $n>5$.

Proof: The figure 4 is the graph of $P_{8} \Theta S_{n}$ with (2n+8) vertices and $(2 n+7)$ edges, with some arbitrary graceful labeling in vertices and edges.

Figure 6: Edge-odd gracefulness of $P_{\mathbf{8}} \Theta S_{n}$

> Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by $\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=(2 \mathrm{i}-1)$, for $\mathrm{i}=7,9, \ldots, 2 \mathrm{n}+7$

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{\mathrm{t}}(\mathrm{v}) \equiv \sum \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k}-1)$, where this sum run over all edges through v
(2)

Thus the map f and the induced map f_{+}provide labels as odd numbers for edges with all distinct and also the labelings for vertex set has distinct values in $\{1,2, \ldots,(2 \mathrm{k}-1)\}$. Hence the graph $\mathrm{P}_{8} \Theta \mathrm{~S}_{\mathrm{n}}$ is edge-odd graceful.

REFERENCES

1. A.Solairaju, A.Sasikala, C.Vimala, Gracefulness of a spanning tree of the graph of product of P_{m} and C_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136
2. A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs " Electronics Notes in Discrete Mathematics Volume 33,April 2009, Pages 15-20
3. A.Solairaju, C.Vimala, A.Sasikala, Gracefulness of a spanning tree of the graph of Cartesian product of S_{m} and S_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No2 (July-Dec 2008): pp 117-120
4. A.Solairaju, A.Sasikala, C.Vimala, Edge-odd Gracefulness of a spanning tree of Cartesian product of P_{2} and C_{n}, Pacific-Asian Journal of Mathematics, Vol .3, No. 1-2. (Jan-Dec. 2009) pp:39-42
5. A.Solairaju, C. Vimala, A. Sasikala, Edge-Odd Gracefulness of $C_{3} \Theta P_{n}$ and $C_{3} \Theta 2 P_{n}$ for n is even (communicated to Serial Publications)
