Edge-odd Gracefulness of the Graph $\mathbf{S}_{\mathbf{2}} \square \mathbf{S}_{\mathbf{n}}$

Dr. A. Solairaju
Associate Professor of Mathematics
Jamal Mohamed College, Tiruchirapalli - 620020.
Tamil Nadu, India.
C. Vimala and A.Sasikala
Assistant Professors (SG), Department of Mathematics,
Periyar Maniammai University, Vallam
Thanjavur - Post. Tamil Nadu, India.

Abstract

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $\quad \mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3$, $\ldots, 2 q-1\}$ so that induced map $\quad f_{+}: V(G) \rightarrow\{0$, $1,2,3, \ldots,(2 k-1)\}$ defined by $\quad f_{+}(x) \equiv \sum f(x, y)(\bmod$ $2 k$), where the vertex x is incident with other vertex y and k $=\max \{\mathrm{p}, \mathrm{q}\}$ makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$ is obtained.

Keywords: Graceful Graph, Edge-odd graceful labeling, Edge-odd graceful graph

INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2010] that the cartesian product of P_{2} and C_{n} for all integer n , and $\mathrm{S}_{\mathrm{m}, \mathrm{n}}$.

Section-2: Edge-odd Gracefulness of book graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$
Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0,1,2, \ldots, m\}$ such that when each edge $u v$ is assigned the label $\mid f(u)$ $f(v) \mid$ and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: The book graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$ is a connected graph obtained by adding ' n ' number of C_{4} with one edge. It has $2 n$ vertices and $3 n-2$ edges. This graph is given in figure 1.

Figure 1: Graph of $S_{2} \square S_{n}$

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ so that induced map $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ defined by $\mathrm{f}_{+}(\mathrm{x}) \equiv \Sigma$ $f(x, y)(\bmod 2 k)$, where the vertex x is incident with other vertex y and $k=\max \{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Theorem 2.1: The connected graph $S_{2} \square S_{n}$, for $n \geq 3$, is edge - odd graceful.

Proof: The figure 2 is the Cartesian product graph $S_{2} \square S_{n}$ with 2 n vertices and $3 \mathrm{n}-2$ edges, with some arbitrary labeling to its vertices and edges. It is proved that the graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$, for $\mathrm{n} \geq 3$, is edge - odd graceful by taking two cases such as n is odd and n is even.

Case (i) : n is odd

Figure 2: Edge - odd graceful Graph $S_{2} \square S_{n}$ for \mathbf{n} is odd

Hence define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by $f\left(e_{i}\right)=(2 i-1)$, for $\mathrm{i}=1,2, \ldots,(3 n-2) \quad$ (Rule 1)

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v (Rule 2).

Hence the map f and the induced map $\quad f_{+}$provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 k-1)\}$. Hence the graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$, for n is odd, is edge-odd graceful.

Case (ii) : n is even

Here it is proved that $S_{2} \square S_{n}$ is graceful by taking 2 cases for n such as
(a). $\mathrm{n} \equiv 2(\bmod 6)$
(b). $\mathrm{n} \equiv 0(\bmod 6)$ and $\mathrm{n} \equiv 4(\bmod 6)$

Subcase (a): $\mathbf{n} \equiv \mathbf{2 (\operatorname { m o d } 6)}$
Here edges are given labeling with odd numbers as in the figure 3

Figure 3: Edge - odd graceful Graph $\mathbf{S}_{2} \square \mathbf{S}_{\mathrm{n}}$, for $\mathbf{n} \equiv 2(\bmod 6)$
Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by $f\left(e_{i}\right)=(2 i-1)$, for $i=1,2, \ldots,(3 n-2)$
$\left.\begin{array}{l}\text { and } \mathrm{i} \neq \mathrm{n}+(\mathrm{n} / 2)-1 \text { and } 2 \mathrm{n}+(\mathrm{n} / 2)-1 \\ \mathrm{f}(\mathrm{n}+\mathrm{n} / 2-1)=5 \mathrm{n}-3 \text { and }\end{array}\right\}$ (Rule 3)
$\mathrm{f}(\mathrm{n}+\mathrm{n} / 2-1)=5 \mathrm{n}-3$ and
$\mathrm{f}(2 \mathrm{n}+\mathrm{n} / 2-1)=3 \mathrm{n}-3$

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v
(Rule 4)
Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 k-1)\}$. Hence the graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$, for $\mathrm{n} \equiv 2(\bmod 6)$, is edge-odd graceful.

Subcase (b): $\mathbf{n} \equiv \mathbf{0 , 4}(\bmod 6)$

The edges are given labeling as in the figure 4

Figure 4: Edge - odd graceful Graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$, for $\mathbf{n}=0,4(\bmod 6)$
Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by
$f\left(e_{i}\right)=(2 i-1)$, for $\mathrm{i}=1,2, \ldots,(3 n-2)$
and $i \neq 1$ and $2 n-1 \quad$ and
For $\mathrm{n} \equiv 0(\bmod 6)$
$\mathrm{f}(1)=1$ and $\mathrm{f}(2 \mathrm{n}-1)=4 \mathrm{n}-3$
For $\mathrm{n} \equiv 4(\bmod 6)$
$f(1)=4 n-3$ and $f(2 n-1)=1$
Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v
(Rule 6)
Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots .,(2 k-1)\}$. Hence the graph $\mathrm{S}_{2} \square \mathrm{~S}_{\mathrm{n}}$, for $\mathrm{n} \equiv 0,4(\bmod 6)$, is edge-odd graceful.

Example 2.1: The connected graph $\mathrm{S}_{2} \square \mathrm{~S}_{7}$ is edge - odd graceful.
The following graph (figure 5) is the book graph with 14 vertices and 19 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

Figure 5: Edge - odd graceful Graph $S_{2} \square S_{7}$ for \mathbf{n} odd
Example 2.2: The connected graph $\mathrm{S}_{2} \square \mathrm{~S}_{8}$, for $\mathrm{n} \equiv 2(\mathrm{mod}$ 6) is edge - odd graceful.

The figure 6 is the book graph with 16 vertices and 22 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

Figure 6: Edge - odd graceful Graph $\mathrm{S}_{2} \square \mathbf{S}_{8}$ $(\mathrm{n} \equiv 2(\bmod 6))$

Example 2.3: The connected graph $\mathrm{S}_{2} \square \mathrm{~S}_{6}, \mathrm{~S}_{2} \square \mathrm{~S}_{10}(\mathrm{n} \equiv 0,4$ $(\bmod 6))$ is edge - odd graceful.

The following graph (figure 7) is the book graph $\mathrm{S}_{2} \square \mathrm{~S}_{6}$ with 12 vertices and 16 edges, with some arbitrary edgeodd graceful labeling to its vertices and edges.

Figure 7: Edge - odd graceful Graph $\mathbf{S}_{2} \square \mathbf{S}_{6}$,

$$
(n \equiv 0(\bmod 6))
$$

The following graph (figure 8) is the book graph $\mathrm{S}_{2} \square \mathrm{~S}_{10}$ with 20 vertices and 28 edges, with some arbitrary edgeodd graceful labeling to its vertices and edges.

Figure 8: Edge - odd graceful Graph $\mathbf{S}_{\mathbf{2}} \square \mathrm{S}_{10}$, $(n \equiv 4(\bmod 6))$

REFERENCE

1. A.Solairaju, C.Vimala and A.Sasikala, Gracefulness of a spanning tree of the graph of Cartesian product of S_{m} and S_{n}, The Global Journal of Applied Mathematics and Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 117-120
A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs, 'Electronics Notes in Discrete Mathematics’ Volume 33, April 2009, Pages 15-20
2. of P_{2} and C_{n} ', Pacific-Asian Journal of Mathematics, Vol .3, No. 1-2. Jan-Dec. 2009, pp:3942
3. A.Solairaju, C. Vimala, and A.Sasikala, 'Edgeodd Gracefulness of $C_{3} \Theta P_{n} \quad \& C_{3} \quad \Theta \quad 2 P_{n}$, (communicated to Serial Publications)
