Edge-odd Gracefulness of the Graph S₂□S_n

Dr. A. Solairaju

Associate Professor of Mathematics Jamal Mohamed College, Tiruchirapalli – 620 020. Tamil Nadu, India.

C. Vimala and A.Sasikala

Assistant Professors (SG), Department of Mathematics, Periyar Maniammai University, Vallam Thanjavur – Post. Tamil Nadu, India.

ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f\colon E(G)\to \{1,3,\ldots,2q\text{-}1\} \text{ so that induced map} \qquad f_+\colon V(G)\to \{0,1,2,3,\ldots,(2k\text{-}1)\} \text{defined by} \qquad f_+(x)\equiv \Sigma f(x,y) \text{ (mod }2k), \text{ where the vertex }x\text{ is incident with other vertex }y\text{ and }k=\max\{p,q\} \text{ makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of $S_2\square S_n$ is obtained.}$

Keywords: Graceful Graph, Edge-odd graceful labeling, Edge-odd graceful graph

INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2010] that the cartesian product of P_2 and $C_{\rm n}$ for all integer n, and $S_{\rm m,\,n}.$

Section-2: Edge-odd Gracefulness of book graph $S_2 \square S_n$

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: The book graph $S_2 \square S_n$ is a connected graph obtained by adding 'n' number of C_4 with one edge. It has 2n vertices and 3n-2 edges. This graph is given in figure 1.

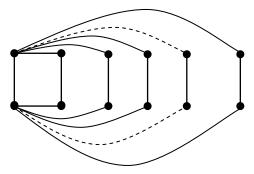


Figure 1: Graph of $S_2 \square S_n$

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f: E(G) \to \{1, 3, ..., 2q-1\}$ so that induced map $f_+: V(G) \to \{0, 1, 2, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma$ $f(x, y) \pmod{2k}$, where the vertex x is incident with other vertex y and $k = \max\{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Theorem 2.1: The connected graph $S_2 \square S_n$, for $n \ge 3$, is edge – odd graceful.

Proof: The figure 2 is the Cartesian product graph $S_2 \square S_n$ with 2n vertices and 3n-2 edges, with some arbitrary labeling to its vertices and edges. It is proved that the graph $S_2 \square S_n$, for $n \ge 3$, is edge – odd graceful by taking two cases such as n is odd and n is even.

Case (i): n is odd

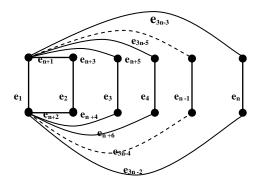


Figure 2: Edge – odd graceful Graph $S_2 \square S_n$ for n is odd

Hence define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by $f(e_i) = (2i-1)$, for i = 1, 2, ..., (3n-2) (Rule 1)

Define $f_+: V(G) \to \{0, 1, 2, ..., (2k-1)\}$ by

 $f_+(v) \equiv \Sigma \ f(uv) \ mod \ (2k), \ where \ this \ sum \ run \ over \ all \ edges \ through \ v \qquad (Rule \ 2).$

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $S_2 \square S_n$, for n is odd, is edge-odd graceful.

Case (ii): n is even

Here it is proved that $S_2 \square S_n$ is graceful by taking 2 cases for n such as

(a). $n \equiv 2 \pmod{6}$ (b). $n \equiv 0 \pmod{6}$ and $n \equiv 4 \pmod{6}$

Subcase (a): $n \equiv 2 \pmod{6}$

Here edges are given labeling with odd numbers as in the figure 3

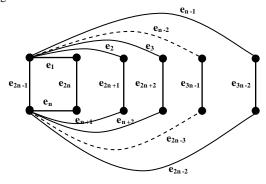


Figure 3: Edge – odd graceful Graph $S_2 \square S_n$, for $n \equiv 2 \pmod{6}$

Define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by $f(e_i) = (2i-1)$, for $i = 1, 2, ..., (3n-2)$ and $i \neq n + (n/2) - 1$ and $2n + (n/2) - 1$ (Rule 3) $f(n + n/2 - 1) = 5n - 3$ and $f(2n + n/2 - 1) = 3n - 3$

Define $f_+: V(G) \to \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ $f(uv) \mod (2k)$, where this sum run over all edges through v (Rule 4)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $S_2 \square S_n$, for $n \equiv 2 \pmod{6}$, is edge-odd graceful.

Subcase (b): $n \equiv 0, 4 \pmod{6}$

The edges are given labeling as in the figure 4

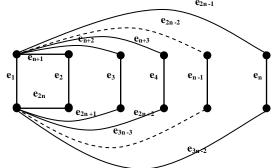


Figure 4: Edge – odd graceful Graph $S_2 \square S_n$, for $n = 0, 4 \pmod{6}$

Define f: $E(G) \to \{1, 3, ..., 2q-1\}$ by

$$f(e_i) = (2i\text{-}1), \text{ for } i = 1, 2, \dots, (3n \text{-}2)$$
 and $i \neq 1$ and $2n \text{-}1$ and
$$For \ n \equiv 0 \ (mod \ 6)$$

$$f(1) = 1 \ and \ f(2n \text{-}1) = 4n - 3$$
 For $n \equiv 4 \ (mod \ 6)$
$$f(1) = 4n - 3 \ and \ f(2n \text{-}1) = 1$$

Define f_+ : $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma \ f(uv) \ mod \ (2k)$, where this sum run over all edges through v (Rule 6)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $S_2 \square S_n$, for $n \equiv 0, 4 \pmod{6}$, is edge-odd graceful.

Example 2.1: The connected graph $S_2 \square S_7$ is edge – odd graceful.

The following graph (figure 5) is the book graph with 14 vertices and 19 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

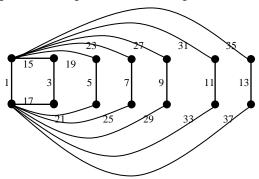


Figure 5: Edge – odd graceful Graph S₂□S₇ for n odd

Example 2.2: The connected graph $S_2 \square S_8$, for $n \equiv 2 \pmod{6}$ is edge – odd graceful.

The figure 6 is the book graph with 16 vertices and 22 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

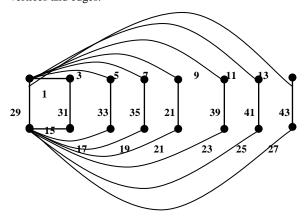


Figure 6: Edge – odd graceful Graph $S_2 \square S_8$ $(n \equiv 2 \; (mod \; 6))$

Example 2.3: The connected graph $S_2 \square S_6$, $S_2 \square S_{10}$ (n $\equiv 0, 4 \pmod{6}$) is edge – odd graceful.

The following graph (figure 7) is the book graph $S_2 \square S_6$ with 12 vertices and 16 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

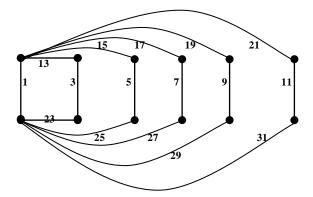


Figure 7: Edge – odd graceful Graph $S_2 \square S_6$, $(n \equiv 0 (mod \ 6))$

The following graph (figure 8) is the book graph $S_2 \square S_{10}$ with 20 vertices and 28 edges, with some arbitrary edge-odd graceful labeling to its vertices and edges.

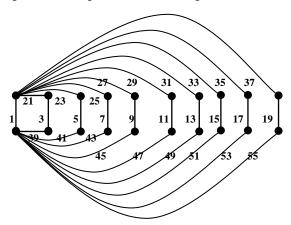


Figure 8: Edge – odd graceful Graph $S_2 \square S_{10}$, $(n \equiv 4 \; (mod \; 6))$

REFERENCE

- 1. A.Solairaju, C.Vimala and A.Sasikala, Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n , The Global Journal of Applied Mathematics and Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 117-120
- A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs, 'Electronics Notes in Discrete Mathematics' Volume 33, April 2009, Pages 15 - 20
- A.Solairaju, A.Sasikala, C.Vimala, 'Edge-odd Gracefulness of a spanning tree of Cartesian product of P₂ and C_n', Pacific-Asian Journal of Mathematics, Vol. 3, No. 1-2. Jan-Dec. 2009, pp:39-42
- 4. A.Solairaju, C. Vimala, and A.Sasikala, 'Edge-odd Gracefulness of $C_3 \odot P_n \& C_3 \odot 2P_n$ ' (communicated to Serial Publications)