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ABSTRACT  

We introduce in this paper the dynamics of Relative 

Superior Mandel-bar sets of inverse complex function for 

Ishikawa iteration. The z plane fractal images generated 

from the generalized transformation 

function
1( )nz z c for 2n are analyzed.   

 Keywords: Complex dynamics, Ishikawa 

Iteration, Relative Superior Mandel-bar sets 

 

1.  INTRODUCTION 

The object Mandelbrot set given by Mandelbrot 

in 1979 and its relative object Julia set have become a wide 

and elite area of research nowadays due to their beauty and 

complexity of their nature. 

 Several papers have used escape-time methods to 

produce images of fractals based on the complex 

mapping
1( )nz z c  , where exponent n is a 

positive integer. Recently, the generalized transformation 

function 
nz z c  for positive integer values of n  

has been considered by K. W. Shirriff [20].On the other 

hand, Shizuo [14], has presented the various properties of 

Multicorns and Tricorns for simple complex function, 
2z z c   where z and c are complex quantities. 

Shizuo[15] has also quoted the Multicorns as the 

generalized Tricorn or the Tricorn of higher order.   

 The dynamics of antipolynomial
dz z c


 

of complex polynomial
dz c , where   2d , leads to 

interesting Tricorn and Multicorns antifractals with respect 

to function iteration (see [6] and [14, 15]). Multicorns are 

symmetrical objects. Their symmetry has been studied by 

Lau and Schleicher [11].  

  The study of connectedness locus for 

antiholomorphic polynomials 
2z c


defined as Tricorn, 

coined by Milnor, plays intermediate role between 

quadratic and cubic polynomials. Crowe etal.[4] considered 

it as in formal analogy with Mandelbrot set and named it as 

Mandel-bar set and also brought its features bifurcations 

along axes rather than at points. Milnor [13] found it as a 

real slice of cubic connected locus. Winters [21] showed it 

as boundary along the smooth arc.  

In this  paper,  we  investigate the dynamics of  

the Mandel-bar set for the transformation of the function  

1( )nz z c ,  for 2n  , and analyze the  z  

plane  fractal  images  generated  from  the iterations  of  

this  function  using Ishikawa iteration procedure and 

analyze the  drastic  changes  that  occur  in  the  visual  

characteristics of the  images from n = 2, 3, 4,... 

 

2.  PRELIMINEARIES 

2.1 Mandel-bar Set: 

Following the Milnor’s [13] study, Shizuo [14] 

has defined the Tricorn, as the connectedness locus for 

antiholomorphic polynomials,
nz c , where 2n .  

We here define the Mandel-bar set as follows: 

Definition2.1: The Mandel-bar set cA , for the quadratic 

( )c
nA z z c  is defined as the collection of all 

c C  for which the orbit of the point 0 is bounded, that 

is, 0,1,2,3,...{ : (0) }c c nA c C A is bounded .  

An equivalent formulation is   

{ : (0) }c cA c C A not tends to as n  

As quoted by Devaney [6], iterations of the 

function
2

cA z c , using the Escape Time 

Algorithm, results in many strange and surprising 

structures.  Devaney [6] has named it Tricorn and observed 

that ( )f z , the conjugate function of ( )f z , is 

antipolynomial. Further, its second iterates is a polynomial 

of degree 4. Taking the initial choice 0z , one can 

iterate
1( )cA z , resulting 1z equals

2
0z c , which can be 

written as
2 2

0 0{| | / }z z c , since 0 0z z   is 

equivalent to
2

0{| | }z , which gives 1z  equals 
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4 2

0 0{| | / }z z c . Using this value one can state the 

conjugate of 1z  as 
4 2

1 0 0{| | / }z z z c , 

resulting
2

0z c . Now the second iterate can be stated as 

2 ( )cA z which is equal to 2

1z c . On simplifying, one can 

get
2 2

0{ }z c c . Further
4 2 2

0 02z z c c c , which 

is a polynomial of degree 4 in z.  The critical point for cA  

is 0, since (0)cc A has only one preimage whereas any 

other w C , has two preimages.   

Definition2.2:  Ishikawa Iteration [10]: Let X be a subset 

of real or complex numbers and :f X X . 

For 0x X , we have the sequences{ }nx and { }ny  in X 

in the following manner: 

( ) (1 )n n n n ny s f x s x  

1 ( ) (1 )n n n n nx s f y s x  

where 0 1ns , 0 1ns and 
ns & 

ns are 

both convergent to non zero number. 

 

Definition 2.3[19]: The sequences nx and 
ny  

constructed above is called Ishikawa sequences of 

iterations or Relative superior sequences of iterates. We 

denote it by 0( , , , )n nRSO x s s t . 

Notice that 0( , , , )n nRSO x s s t  with ns =1 is 

0( , , )nRSO x s t i.e. Mann’s orbit and if we place 

1n ns s  then 0( , , , )n nRSO x s s t  reduces to 

0( , )O x t . 

             We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns  is Relative 

Superior orbit. Now we define Mandelbrot sets for 

function with respect to Ishikawa iterates. We call them as 

Relative Superior Mandelbrot sets. 

  

Definition 2.4[19]: Relative Superior Mandelbar set 

RSMB for the function of the form ( ) n

cQ z z c , 

where n = 1, 2, 3, 4… is defined as the collection of 

c C for which the orbit of 0 is bounded i.e. 

 { : (0) : 0,1, 2...}k

cRSMB c C Q k is 

bounded. 

Here we present the study of Relative Superior Mandelbar 

set and Relative Superior Julia set by using the Escape 

Time Algorithm with respect to Ishikawa Iterates.   

Now, we define escape criterions for these sets. 

2.4 Escape Criterion:  Fractals have been generated from 

nz z c using escape-time techniques, for example 

by Gujar etal. [7, 8] and Glynn [9]. We have used in this 

paper escape time criteria of Relative Superior Ishikawa 

iterates for function
1( )nz z c .  

 We obtain here a general escape criterion for 

polynomials of the form ( ) n

cG z z c    

 Escape Criterion for Quadratics: Suppose 

that | | max{| |,2 / ,2 / }z c s s , then 

| | (1 ) | |n

nz z  and | |nz as n .So, 

| | | |z c and | | 2 /z s as well as | | 2 /z s  shows 

the escape criteria for quadratics. 

Escape Criterion for Cubics:  Suppose 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }z b a s a s  

then | |nz   as n . This gives an escape criterion 

for cubic polynomials 

General Escape Criterion: Consider 
1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s  then | |nz   

as n is the escape criterion. (Escape Criterion derived 

in [3] & [19]). 

Note that the initial value 0z  should be infinity, since 

infinity is the critical point of 1( )nz z c . However 

instead of starting with 0z = infinity, it is simpler to start 

with 1z  = c , which yields the same result. (A critical 

point of z F(z) c is a point where ( ) 0F z ). 

The role of critical points is explained in [1]. 

The purpose of this paper is to visualize the relative 

superior antifractals of the complex inverse function i.e., 

antifractals with respect to relative superior orbit and to 

analyze the pattern of symmetry among them. 

3.  GEOMETRY OF RELATIVE 

SUPERIOR MANDELBAR SETS 

   The results of plotting the Relative Superior Mandelbar 

set for the function cA  using Ishikawa Iterates, gives us 

the half moon shaped like crescent structure, hence, it can 

be named as Relative Superior Mandelbar set for quadratic. 

Crowe et. al [4], has considered it in formal analogy with 

Mandelbrot set and named it “Mandelbar set”. The general 

escape criterion for higher powers of polynomials, 

( )c
nA z z c  where n is the degree of the 

polynomial, is given as 
1/ 1/max{| |, (2 / ) , (2 / ) }n nc s s  

This can be used as the escape criterion for the function 

( )cA z .We derive Relative Superior Mandelbar sets using 

this escape criteria. We have used the same escape criterion 

for generating the new Mandelbar sets for quadratic 
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function for which the condition 

is max{| |,2 / ,2 / }c s s .   

  The characteristics of the Relative Superior Julia set for a 

point inside the Relative Superior Mandelbar set can be 

given by observing the Relative Superior Mandelbar set. 

We know that, if c lies in cA , the orbit of 0.0 does not 

escape to infinity. Hence we can say that if c does not lie in 

cA  then the Relative Superior Julia set cJ  for Relative 

Superior Mandelbar set, is a Cantor set. The Relative 

Superior Julia set of cA is either connected or totally 

disconnected, depending on, whether the orbit of 0 is 

bounded or escapes to infinity. We know that every 

Relative Superior Julia set is either:   

 · A Primary Relative Superior Julia set, or  

 · A Secondary Relative Superior Julia set  

    Primary Relative Superior Julia set are the 

Relative superior Julia set for the points attached to the 

main body of the Relative Superior Mandelbar set, whereas 

the name secondary Relative Superior Julia set can be 

given to those Julia set which belongs to the parts attached 

to the main body. We study here the primary Relative 

Superior Julia set for Relative Superior Mandelbar set (See 

Section 6).  Further, we observe that the Relative Superior 

Julia set for Relative superior Mandelbar set consists of all 

c-values for which cJ  is connected, or the orbit of 0.0 

under 
2z c does not tend to infinity.  

We see that the Relative Superior Mandelbar set 

of quadratics consists of one crescent shaped body. Further, 

the Relative superior Mandelbar sets of higher polynomials 

contain the Main body having the number of parts attached 

to it less than that of Multicorns [4, 14, 15 &16].   

   Here, we are presenting the observation in the study 

of the Relative Superior Mandelbar sets from the figures 

mentioned in Section 5.  

Relative Superior Mandelbar sets:  

 Here we notice that the number of body parts in 

the Relative Superior Mandelbar sets is n-1, 

where n is the power of z . 

 As the value of s tend to 1 and s' tends to 1, the 

Relative Superior Mandelbar sets of order higher 

than two, have their main body get separated into 

n-1 equal parts which exists at some distance 

from each other. 

 Starting with ( )c
nA z z c , for n = 2,3,4,... 

and s < 1, s' < 1and applying the Ishikawa iterates 

we see that the Relative Superior Mandelbar sets 

of this function carries number of cuts in each 

crescent equals to n+1 

 We also observe that for n is odd we have 

symmetry about both X and Y axis but for n is 

even the symmetry is maintained only along X 

axis. 

Relative Superior Julia sets:  

 Geometrical analysis of the Relative Superior Julia sets of 

inverse  complex conjugate function shows that the 

boundary of the fixed point region forms a (n - 1) crescent 

shaped petals like parts.  

  For each value of c, we can iterate the mapping and test 

whether the resulting sequence of z approaches a cycle or 

not. The points that lead to a cycle can be colored 

according to the length of the cycle and the points that 

never enter the cycle but wander chaotically are colored 

dark. The light color regions in the figures represent 

stable points while dark colored regions represent 

unstable points. 

 

   Relative Superior Julia sets of inverse complex conjugate 

function for quadratic function shows ball shaped figure 

maintaining symmetry along X axis. For cubic function 

Relative Superior Julia sets shows symmetry along X and Y 

axes both. Moreover this function also describes reflection 

and rotational symmetry. The biquadratic function shows 

us the fascinating results. Here we have central planet with 

satellite like structures obtained that represents reflection 

as well as rotational symmetry. 

 

4. FIXED POINTS 

4.1 Fixed points of quadratic polynomial  

Table 1: Orbit of F(z) for s=1, s'=1 at 

z0= -0.7596358795+0.006005097i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.75966 11 0.22073 

2 0.44694 12 0.22071 

3 0.37567 13 0.22067 

4 0.37069 14 0.22069 

5 0.16322 15 0.22068 

6 0.22445 16 0.22068 

7 0.22942 17 0.22068 

8 0.21663 18 0.22068 

9 0.22109 19 0.22068 

10 0.22115 20 0.22068 

Here we observe that the value converges to a fixed point 

after 15 iterations 

Figure 1.  Orbit of F(z) for s=1, s'=1 at 

z0= -0.7596358795+0.006005097i 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 9– No.2, November 2010 

20 

Table 2: Orbit of F(z) for s=0.5, s'=0.7 at 

z0= -0.6160374839+0.0135629073i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.61619 14 0.35866 

2 0.5189 15 0.35835 

3 0.288 16 0.35852 

4 0.43079 17 0.35842 

5 0.32218 18 0.35848 

6 0.37886 19 0.35845 

7 0.34703 20 0.35846 

8 0.36492 21 0.35845 

9 0.35484 22 0.35846 

10 0.36049 23 0.35846 

11 0.35732 24 0.35846 

12 0.3591 25 0.35846 

13 0.3581 26 0.35846 

Here we observe that the value converges to a fixed point 

after 22 iterations 

Figure 2.  Orbit of F(z) for  s=0.5, s'=0.7 at 

z0= -0.6160374839+0.0135629073i 

 

  
Table 3: Orbit of F(z) for  0.4, s'=0.1 at 

z0= -0.04164390139+0.006005097i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.042075 16 0.93234 

2 0.81996 17 1.001 

3 0.2836 18 0.94791 

4 1.101 19 0.96464 

5 0.52569 20 0.95734 

6 1.8414 21 0.95903 

7 1.031 22 0.95897 

8 0.74237 23 0.95875 

9 8.0956 24 0.9589 

10 4.8648 25 0.95884 

11 2.9397 26 0.95885 

12 1.8177 27 0.95885 

13 1.2423 28 0.95885 

14 0.97245 29 0.95885 

15 1.0586 30 0.95885 

 

Here the value converges to a fixed point after 26 

iterations 

Figure 3.  : Orbit of F(z) for  0.4, s'=0.1 at 

z0= -0.04164390139+0.006005097i 

 
4.2  Fixed points of Cubic polynomial  

Table 1: Orbit of F(z) for s=1, s'=1 at 

z0= 0.222879459+0.7693439369i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.80098 6 0.13547 

2 0.069844 7 0.13547 

3 0.13321 8 0.13547 

4 0.13536 9 0.13547 

5 0.13546 10 0.13547 

Here the value converges to a fixed point after 06 

iterations 

Figure  1 Orbit of F(z) for s=1, s'=1 at 

z0= 0.222879459+0.7693439369i 

 

Table 2: Orbit of F(z) for s=0.4,s'=0.2 at 

z0 = -0.0189704705+0.02867852789i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

18 0.6098 28 0.50274 

19 0.45643 29 0.50223 

20 0.52977 30 0.50252 

21 0.4871 31 0.50236 

22 0.51134 32 0.50245 

23 0.49733 33 0.5024 

24 0.50536 34 0.50243 

25 0.50073 35 0.50241 

26 0.50339 36 0.50242 

27 0.50186 37 0.50242 

We skipped 17 iterations and value converges to a fixed 

point after 36 iterations  
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Figure 2 Orbit of F(z) for s=0.4, s'=0.2 at 

z0 = -0.0189704705+0.02867852789i 

 
Table 3: Orbit of F(z) for s=0.5, s'=0.7 at 

z0= -0.003854849909-0.01666833389i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.017108 12 0.13646 

2 0.2116 13 0.13602 

3 0.096623 14 0.13627 

4 0.1598 15 0.13613 

5 0.12295 16 0.13621 

6 0.1439 17 0.13617 

7 0.13178 18 0.13619 

8 0.13872 19 0.13618 

9 0.13473 20 0.13619 

10 0.13702 21 0.13618 

11 0.1357 22 0.13618 

Here the value converges to a fixed point after 21 

iterations 

Figure 3 Orbit of F(z) for s=0.5, s'=0.7 at 

z0= -0.003854849909-0.01666833389i 

 
 

4.3  Fixed points of Bi-quadratic polynomial 

Table 1: Orbit of F(z) for s=1, s'=1 at 

z0= 0.4118247163+0.7164392648i 

 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.82637 4 0.062471 

2 0.0038329 5 0.062471 

3 0.06247 6 0.062471 

Here the value converges to a fixed point after 04 

iterations 

Figure 1 Orbit of F(z) for s=1, s'=1 at 

z0= 0.4118247163+0.7164392648i 

 
Table 2: Orbit of F(z) for s=0.4, s'=0.2 at 

z0= -0.03408609109+0.04379414848i 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.055496 13 0.49886 

2 0.76449 14 0.50069 

3 0.31085 15 0.49959 

4 0.61364 16 0.50025 

5 0.43138 17 0.49986 

6 0.54122 18 0.50009 

7 0.47532 19 0.49995 

8 0.51481 20 0.50003 

9 0.49113 21 0.49998 

10 0.50532 22 0.50001 

11 0.49682 23 0.5 

12 0.50191 24 0.5 

Here the value converges to a fixed point after 23 

iterations  

Figure 2 Orbit of F(z) for s=0.4, s'=0.2 at 

z0= -0.03408609109+0.04379414848i 

 

Table 3:  Orbit of F(z) for s=0.5, s'=0.7 at 

z0= -0.0189704705-0.001552713296i 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

1 0.019034 11 0.25855 

2 0.11937 12 0.2586 

3 0.19186 13 0.25863 

4 0.22649 14 0.25865 

5 0.24441 15 0.25865 

6 0.252 16 0.25865 

7 0.25581 17 0.25866 

8 0.25733 18 0.25866 

9 0.2581 19 0.25866 

10 0.25839 20 0.25866 
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Here the value converges to a fixed point after 17 

iterations  

Figure 3.  Orbit of F(z) for s=0.5, s'=0.7 at 

z0= -0.0189704705-0.001552713296i 

 

 

5. GENERATION OF RELATIVE 

SUPERIOR MANDELBAR SETS 
           We generate Relative Superior Mandelbar sets for 

quadratic, cubic, biquadratic function and other higher 

order polynomials.  

4.1 Relative Superior Mandelbar sets for Quadratic 

function: 

Figure 1: Relative Superior Mandelbar set for s=s'=1    

 
Figure 2: Relative Superior Mandelbar set for s=0.6, 

s'=0.2 

 

Figure 3: Relative Superior Mandelbar set for s=0.5, 

s'=0.5 

 

4.2.  Relative Superior Mandelbar set for Cubic 

function: 

Figure 1: Relative Superior Mandelbar set for s=1, s'=1 

 
Figure 2: Relative Superior Mandelbar set for s=0.4, 

s'=0.2 

 
Figure 3: Relative Superior Mandelbar set for s=0.5, 

s'=0.7 

 
 

4.3 Relative Superior Mandelbar set for Bi-quadratic 

function: 

Figure 1: Relative Superior Mandelbar set for s=s'=1       

 
Figure 2: Relative Superior Mandelbar set for s=0.4 

s'=0.2 

 
Figure 3: Relative Superior Mandelbar set for s=0.5, 

s'=0.7 
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4.4. Generalization of Relative Superior Mandelbar sets: 

Figure 1: Relative Superior Mandelbar set for s=0.5, 

s'=0.3, n=15 

 
Figure 2: : Relative Superior Mandelbar set for s=0.5, 

s'=0.2, n=19 

 
Figure 3: Relative Superior Multicorns for s=0.8, 

s'=0.2, n=52 

 
 

 

6. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS FOR 

MANDELBAR SETS 
 We present here some filled Relative Superior 

Julia sets for quadratic, cubic and biquadratic function.  

6.1 Relative Superior Julia sets for Quadratic: 

Figure 1: Relative Superior Julia Set for s=0.4, s'=0.1 

c=-0.04164390139+0.006005097i 

 
          

Figure 2: Relative Superior Julia Set for, s=0.6, s'=0.2 

c=-0.08166620257-0.00739899807i 

 
 

 6.2   Relative Superior Julia sets for Cubic function: 

 

Figure 1: Relative Superior Julia for s=0.4,s'=0.2 

c=-0.0189704705+0.02867852789i 

 
 

Figure 2: Relative Superior Julia Set for s=0.5,s'=0.7 c=-

0.003854849909-0.01666833389i 
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6.3 Relative Superior Julia sets for Bi-quadratic 

function: 

Figure 1: Relative Superior Julia for s=0.4, s'=0.2 

c=-0.03408609109+0.04379414848i 

 
 

Figure 2: Relative Superior Julia for s=0.5, s'=0.7 

c=-0.0189704705-0.001552713296i 

 
 

7.  CONCLUSION: 

 In the dynamics of antipolynomial   of complex 

polynomial
nz c , where   2n , there exist many 

Mandelbar sets for a value of n with respect to Relative 

Superior orbit. Further, for the odd values of n, all the 

Relative Superior Mandelbar sets are symmetrical objects, 

and for even values of n, all the Relative Superior 

Mandelbar sets are symmetrical about x-axis. Besides this, 

our antifractals are different from the normal Tricorns and 

Multicorns as they have (n-1) wings. 
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