A Study on Bi HX Group

P.Pandiammal Department of Mathematics, PSNA CET, Dindigul, Tamil Nadu, India R.Natarajan HOD, Department of Mathematics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India N.Palaniappan Department of Mathematics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India

ABSTRACT

In this paper we introduce the concept of Bi HX group and study some of its properties.

Keywords

Bi group, Sub-bi group, HX group, Bi HX group, HX group homomorphism, Bi HX group homomorphism.

INTRODUCTION

The theoretical needs of the set-value mappings lead the birth of some mathematical structures. Prof. Li Hongxing [1, 2] first introduced the concept of HX group which originated the study of HX group; moreover, some useful results are obtained. Since the operations in a HX group is based on the operations of some elements in the base algebra, it is worth to study how to represent directly these operations and to judge whether a subset of the power set are a certain algebraic structure. In this paper we introduce and discuss the properties of Bi HX group.

1. PRELIMINARIES

Definition 1.1

A set (G, +, o) with two binary operation '+' and 'o' is called a Bi group if there exists two proper subsets

$$G_1$$
 and G_2 of G such that,

(i)
$$(G_1,+)$$
 is a group,
(ii) $(G_2, _0)$ is a group,
(iii) $G = G_1 \cup G_2$

Definition 1.2. A non-empty subset H of a bi group (G, +, o) is called a sub- bi group, if H itself is a bi group under a operation '+' and 'o' defined on G.

Definition 1.3. [1] In 2^{G} -{ ϕ } we define an algebraic operation: $AB = \{ab \mid a \in A, b \in B\}$ (I)

An nonempty set $g \subset 2^{G} \{ \phi \}$ is called a HX group on G, if g is a group with respect to the operation (I), which its unit element is denoted by E.

Definition 1.4. Let *g* be a HX group on G. Let us defined that,

$$G^* = \bigcup \{A/A \in \mathfrak{g}\}$$
$$G^o = \left\{a \in G^* / a^{-1} \in G^*\right\}$$

Definition 1.5. A set (g,+, o) with two binary operation "+" and "o" is called a Bi HX group if there exists two proper subsets $g_1 \& g_2$ such that

- (i) $(g_{1, +})$ is a HX group
- (ii) (g₂ o) is a HX group
- (iii) $g = g_1 \bigcup g_2$

Definition 1.6. Let g and g^{1} be any two HX groups. A mapping f: $g \rightarrow g^{1}$ is called a HX group homomorphism if it satisfies the condition, f(AB) = f(A) f(B) for all $A, B \in g$.

Definition 1.7. Let $(g=g_1 \bigcup g_2, +, o)$ and $(g^t=g_1^{t} \bigcup g_2^{t}, +', o')$ be a Bi HX group. The map f: $g \rightarrow g^t$ is said to be an Bi HX group homomorphism if **f** is restricted to g_1 (i.e) \mathbf{f}/g_1 is a HX group homomorphism from g_1 to g_1^t and **f** is restricted to g_2 (i.e) \mathbf{f}/g_2 is a HX group homomorphism from g_2 to g_2^{t} . **Definition 1.8.** Let $(g = g_1 \bigcup g_2, +, o)$ be a Bi HX group of a bi group G.

Then define $G^* = G_1^* \bigcup G_2^*$ Where $G_1^* = \bigcup \{A/A \in g_1\}$ and $G_2^* = \bigcup \{A/A \in g_2\}$ $G^o = G_1^o \bigcup G_2^o$ where $G_1^o = \left\{a \in G_1^* / a^{-1} \in G_1^*\right\}$ and $G_2^o = \left\{a \in G_2^* / a^{-1} \in G_2^*\right\}$

2. BASICS THEOREM ON HX GROUP:

Theorem2.1. [1] If g is a HX group on G, then

(i)
$$(\forall A \in \mathfrak{g}) (|A| = |B|);$$

(ii) $(\forall A, B \in \mathfrak{g})$
 $(A \cap B \neq \phi \Longrightarrow |A \cap B| = |E|)$

Proof. (i) In one respect we have AE=A $\Rightarrow (\forall a \in A)(aE \subset AE = A)$

$$\Rightarrow |E| = |aE| \le |A|$$

In the other respect we have

$$A A^{-1}=E$$

$$\Rightarrow (\forall b \in A^{-1})(bA \subset A^{-1}A = E)$$

$$\Rightarrow |A| = |bA| \le |E|$$
(ii) First $|A \cap B| \le |A| = |E|$
Second, $c \in A \cap B \Rightarrow cE \subset A \cap B \Rightarrow$
 $|E| = |cE| \le |A \cap B|$.

Theorem2.2. [1] Let H be a subgroup of G and E be a subset of G satisfying $E^2=E$. If $(\forall a \in H)(aE = Ea)$ then $g = \{aE | a \in H\}$ is a HX group on G its unit element just E. **Proof.** Take the surjection $f: H \rightarrow g$, $a \mapsto aE$. f(ab)=(ab)E =(ab)EE =a(bE)E =a(Eb)E =(aE)(Be) =f(a)f(b), So, H~g. This g is a group. Moreover, f(e)=eE=E. So E is the unit element of g.

Theorem2.3. [1] Let g is a HX group on G. If E is a subgroup of G, then(i) $g = \{aE | a \in G^*\};$ (ii) G^* if a subgroup of G.

Proof. (i) $\forall A \in g$, take $a \in A$. We have $aE \subset AE = A$. It can be proved that aE=A. If it is not true, then there exists $b \in A - aE$. Then we have $a^{-1}b \notin E$ because $b = ac \in aE$ if $a^{-1}b = c \in E$. If $d \in A^{-1}$ we have da and $db \in A^{-1}A = E$. Thus $a^{-1}b = a^{-1}d^{-1}db$ $= (da)^{-1}(db) \in E$.

This is a contradiction with $a^{-1}b \notin E$. So aE = A. This means that $a \subset \{aE \mid a \in G^*\}$.

Conversely, $\forall a \in G^*$, $\exists A \in g$, such that $a \in A$. So $aE = A \in g$. Thus {aE $/a \in G^*$ } $\subset g$.

(ii) $\forall a \in G^*$, $\exists A \in g$, such that $a \in A$. Noting $e \in E$ and $AA^{-1} = E$, then there exist $b \in A, b^{-1} \in A^{-1}$, such that $bb^{-1} = e$. From A=bE we have $c \in E$ such that a=bc. So, $a^{-1} = (bc)^{-1}$ $= c^{-1}b^{-1} \in EA^{-1} = A^{-1} \subset G^*$ **Theorem2.4.** [1] Let f be a homomorphism from G to another group G'. We have

(i) If g is a HX group on G, then

 $g^{1} = {f(A)/A \in g}$ is a HX group on G' and $g \sim g^{1}$

(ii) Let f be a surjection. If g^{\pm} is a HX group on G' , then

 $g = \{f^{-1} (A') / A' \in g^{i}\}$ is a HX group on G and $g \sim g^{i}$

Proposition 2.1. [1] Let g be a HX group on G, and $B \subset 2^{G} \{ \phi \}$ with $B^{2}=B$. If B satisfies the condition: $(\forall A \in g) (AB = BA)$, then

 $g_{\mathbf{B}} = \{AB/A \in g\}$ is a HX group

on G and g-g B.

(A

The proof is straight.

3. SOME RESULTS ON BI-HX GROUP:

Theorem 3.1. If g is a Bi HX group on a Bi group G, then

(i)
$$(\forall A \in g) (|A| = |B|)$$

(ii) $(\forall A, B \in g)$
 $\cap B \neq \phi \Longrightarrow |A \cap B| = |E|)$

Proof. (i) $A \in g = g_1 \bigcup g_2$. Let $A \in g_1$ and g_1 is a HX group on G_1 . Therefore, |A| = |B|Similarly, $A \in g_2$ and g_2 is a HX group on G_2 . |A| = |B|Hence $(\forall A \in g) (|A| = |B|)$ (ii) Let $A, B \in g_1$. Since g_1 is a HX group on G_1

 $|A \cap B| = |E|$

Similarly, A, $B \in g_2$ Since g_2 is a HX group on G_2

Therefore
$$|A \cap B| = |E|$$

Hence

$$(A \cap B \neq \phi \Longrightarrow |A \cap B| = |E|).$$

Theorem 3.2. Let $g = (g_1 \bigcup g_2, +, o)$ be a Bi HX group of a bi group $G = (G_1 \cup G_2, +, o)$. Then

 $(\forall A, B \in \mathfrak{g})$

- (a) G^* is a sub-bi group of G
- (b) $G^o \neq \phi$ iff $e_1 \in G^o$ and $e_2 \in G^o$ where e_1 is the identity element of G_1 and e_2 is the identity element of G_2 respectively.

(c)
$$G^o \neq \phi$$
 iff G^o is a sub-bi group of G.

Proof. (a) Let a, $b \in G^*$. Then

(i) $a, b \in G_1^*$, then there exists $A, B \in g_1$ such that $a \in A$ and $b \in B$. $\Rightarrow a+b \in A+B \subset G_1^*$ $\Rightarrow (G_1^*,+)$ is a group.

(ii) c, d $\in \mathbf{G_2}^*$, then there exists $C, D \in \mathfrak{g}_{\mathbf{R}}$ such that

 $c \in C$ and $d \in D$.

 $\Rightarrow \operatorname{cod} \in \operatorname{CoD} \subset \operatorname{G}_2^*$ $\Rightarrow (\operatorname{G}_2^*, \operatorname{o}) \text{ is a group.}$

Clearly $G^* = G_1^* \bigcup G_2^*$

Clearly $G = G_1 \cup G_2$

Therefore, G^* is a sub-bi group of G.

(c) Let
$$G^o \neq \phi$$

Let a, $\mathbf{b} \in G^o$

(i) Let
$$a, b \in G_1^o$$

 $\Rightarrow -a, -b \in G_1^*$
 $\Rightarrow - (a+b) \in G_1^*$
 $\Rightarrow a+b \in G_1^o$

Therefore (G_1^o , +) is a group.

(ii) Let
$$a, b \in G_2^o$$

 $\Rightarrow a^{-1}, b^{-1} \in G_2^*$
 $\Rightarrow (ab)^{-1} \in G_2^*$
 $\Rightarrow ab \in G_2^o$
 $\Rightarrow (G_2^o, +)$ is a group.

Therefore $G^o = G_1^o \bigcup G_2^o$ is a sub-bi group of G.

Theorem3.3. Let f be a bi group homomorphism from G to another bigroup G'. We have

(i) If g is a Bi HX group on a bi group G, then $g^{1} =$

 ${f(A)/A \in g}$ is a Bi HX group on G' and $g \sim g$

(ii) Let f be a surjection. If g^{\pm} is a Bi HX group on G', then $g = \{f^{-1} (A') | A' \in g^{\pm}\}$ is a Bi HX group on G and $g \sim g^{\pm}$.

4. CONCLUSIONS

Further work is in progress in order to develop the Fuzzy Bi-HX group and Anti Fuzzy Bi-HX group.

REFERENCES

[1] **LiHongxing**, HX group, BESEFAL, pp(31-37).

[2] **LiHongxing,** Hypergroup (I), BESEFAL, 23(1985), pp(22-29).

[3] **Hall,M.**, The Theory of Group, Macmillan, New York, 1959.