A Study on Bi HX Group

P.Pandiammal
Department of
Mathematics, PSNA CET,
Dindigul, Tamil Nadu, India

R.Natarajan
HOD, Department of
Mathematics, Alagappa
University,
Karaikudi-630 003, Tamil
Nadu, India

N.Palaniappan
Department of
Mathematics, Alagappa
University,
Karaikudi-630 003, Tamil
Nadu, India

Abstract

In this paper we introduce the concept of Bi HX group and study some of its properties.

Keywords

Bi group, Sub-bi group, HX group, Bi HX group, HX group homomorphism, Bi HX group homomorphism.

INTRODUCTION

The theoretical needs of the set-value mappings lead the birth of some mathematical structures. Prof. Li Hongxing [1, 2] first introduced the concept of HX group which originated the study of HX group; moreover, some useful results are obtained. Since the operations in a HX group is based on the operations of some elements in the base algebra, it is worth to study how to represent directly these operations and to judge whether a subset of the power set are a certain algebraic structure. In this paper we introduce and discuss the properties of Bi HX group.

1. PRELIMINARIES

Definition 1.1

A set ($\mathrm{G},+, \mathrm{o}$) with two binary operation ' + ' and ' o ' is called a Bi group if there exists two proper subsets G_{1} and G_{2} of G such that,
(i) $\left(G_{1},+\right)$ is a group,
(ii) $\left(G_{2},{ }_{\mathrm{o}}\right)$ is a group,
(iii)

$$
G=G_{1} \cup G_{2}
$$

Definition 1.2. A non-empty subset H of a bi group $(\mathrm{G},+, \mathrm{o})$ is called a sub- bi group, if H itself is a bi group under a operation ' + ' and ' o ' defined on G.

Definition 1.3. [1] In $2^{\mathrm{G}}-\{\phi\}$ we define an algebraic operation: $A B=\{a b / a \in A, b \in B\}$

An nonempty set $g \subset 2^{\mathrm{G}}-\{\phi\}$ is called a HX group on G, if g is a group with respect to the operation (I), which its unit element is denoted by E .

Definition 1.4. Let g be a HX group on G. Let us defined that,

$$
\begin{aligned}
& \mathrm{G}^{*}=\bigcup\{\mathrm{A} / \mathrm{A} \in \mathrm{~g}\} \\
& G^{o}=\left\{a \in G^{*} / a^{-1} \in G^{*}\right\}
\end{aligned}
$$

Definition 1.5. A set ($\mathrm{g},+$, o) with two binary operation " + " and " 0 " is called a Bi HX group if there exists two proper subsets $g_{1} \& g_{2}$ such that
(i) $\quad\left(g_{1},+\right)$ is a $H X$ group
(ii) $\quad\left(g_{2} 0\right)$ is a HX group
(iii) $\quad g=g_{1} \bigcup g_{2}$

Definition 1.6. Let g and g^{1} be any two HX groups. A mapping f: $g \rightarrow g^{1}$ is called a HX group homomorphism if it satisfies the condition,

$$
f(A B)=f(A) f(B) \text { for all } A, B \in g
$$

Definition 1.7. Let $\left(g=g_{1} \bigcup g_{2},+, o\right)$ and $\left(g^{1}=\right.$ $\left.g_{1}{ }^{1} \cup g_{2}{ }^{1},+^{\prime}, o^{\prime}\right)$ be a Bi HX group. The map $f:$ $g \rightarrow g^{1}$ is said to be an Bi HX group homomorphism if \mathbf{f} is restricted to g_{1} (i.e) \mathbf{f} / g_{1} is a HX group homomorphism from g_{1} to $g_{1}{ }^{1}$ and f is restricted to g_{2} (i.e) f / g_{2} is a HX group homomorphism from g_{2} to $g_{2}{ }^{1}$.

Definition 1.8. Let $\left(g=g_{1} \cup g_{2},+, o\right)$ be a Bi HX group of a bi group G.

$$
\begin{aligned}
& \text { Then define } \quad \mathrm{G}^{*}=\mathrm{G}_{1}{ }^{*} \bigcup \mathrm{G}_{2}^{*} \\
& \text { Where } \mathrm{G}_{1}{ }^{*}=\bigcup\left\{\mathrm{A} / \mathrm{A} \in g_{1}\right\} \text { and } \\
& \mathrm{G}_{2}^{*}=\bigcup\left\{\mathrm{A} / \mathrm{A} \in g_{2}\right\} \\
& G^{o}=G_{1}^{o} \bigcup G_{2}^{o} \text { where } \\
& \qquad G_{1}^{o}=\left\{a \in G_{1}^{*} / a^{-1} \in G_{1}^{*}\right\} \text { and } \\
& G_{2}^{o}=\left\{a \in G_{2}^{*} / a^{-1} \in G_{2}^{*}\right\}
\end{aligned}
$$

2. BASICS THEOREM ON HX GROUP:

Theorem2.1. [1] If g is a HX group on G, then
(i) $\quad(\forall A \in g)(|A|=|B|) ;$
(ii) $(\forall A, B \in g)$
$(A \cap B \neq \phi \Rightarrow|A \bigcap B|=|E|)$

Proof. (i) In one respect we have
$\mathrm{AE}=\mathrm{A}$
$\Rightarrow(\forall a \in A)(a E \subset A E=A)$
$\Rightarrow|E|=|a E| \leq|A|$
In the other respect we have
$\mathrm{A} \mathrm{A}^{-1}=\mathrm{E}$
$\Rightarrow\left(\forall b \in \mathrm{~A}^{-1}\right)\left(b A \subset \mathrm{~A}^{-1} A=E\right)$
$\Rightarrow|A|=|b A| \leq|E|$
(ii) First $|A \bigcap B| \leq|A|=|E|$

Second, $c \in A \bigcap B \Rightarrow c E \subset A \bigcap B \Rightarrow$ $|E|=|c E| \leq|A \bigcap B|$.

Theorem2.2. [1] Let H be a subgroup of G and E be a subset of G satisfying $E^{2}=E$. If $(\forall a \in H)(a E=E a)$ then $\mathrm{g}=\{\mathrm{aE} / \mathrm{a} \in H\}$ is a

Proof. Take the surjection $\mathrm{f}: \mathrm{H} \rightarrow \mathrm{g}, a \mapsto a E$. $f(a b)=(a b) E$

$$
\begin{aligned}
& =(\mathrm{ab}) \mathrm{EE} \\
& =\mathrm{a}(\mathrm{bE}) \mathrm{E} \\
& =\mathrm{a}(\mathrm{~Eb}) \mathrm{E} \\
& =(\mathrm{aE})(\mathrm{Be}) \\
& =\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{~b}),
\end{aligned}
$$

So, $H \sim g$. This g is a group. Moreover, $f(e)=e E=E$. So E is the unit element of g.

Theorem2.3. [1] Let g is a HX group on G. If E is a subgroup of G , then(i) $\mathrm{g}=\left\{\mathrm{aE} / \mathrm{a} \in \mathrm{G}^{*}\right\}$;
(ii) $\quad \mathrm{G}^{*}$ if a subgroup of G .

Proof. (i) $\forall A \in$ g, take $\mathrm{a} \in \mathrm{A}$. We have $\mathrm{aE} \subset A E=A$. It can be proved that $\mathrm{aE}=\mathrm{A}$. If it is not true, then there exists $\mathrm{b} \in A-a E$. Then we have $\quad a^{-1} b \notin E \quad$ because $\quad b=a c \in a E \quad$ if $a^{-1} b=c \in E$. If $d \in A^{-1}$ we have da and $\mathrm{db} \in A^{-1} A=E$.
Thus $a^{-1} b=a^{-1} d^{-1} d b$

$$
=(d a)^{-1}(d b) \in E
$$

This is a contradiction with $a^{-1} b \notin E$. So $\mathrm{aE}=A$. This means that $\mathrm{g} \subset\left\{\mathrm{aE} / \mathrm{a} \in \mathrm{G}^{*}\right\}$.

Conversely, $\forall a \in G^{*}, \quad \exists A \in \mathrm{~g}$, such that $\mathrm{a} \in \mathrm{A}$. So $\mathrm{aE}=A \in \mathrm{~g}$. Thus $\{\mathrm{aE}$ $\left./ \mathrm{a} \in \mathrm{G}^{*}\right\} \subset \mathrm{g}$.
(ii) $\quad \forall a \in G^{*}, \exists A \in g$, such that $\mathrm{a} \in \mathrm{A}$. Noting $e \in E$ and $A A^{-1}=E$, then there exist $\mathrm{b} \in A, b^{-1} \in A^{-1}$, such that $b b^{-1}=e . \quad$ From $\mathrm{A}=\mathrm{bE}$ we have $c \in E$ such that $\mathrm{a}=\mathrm{bc}$. So, $a^{-1}=(b c)^{-1}$
$=c^{-1} b^{-1} \in E A^{-1}=A^{-1} \subset G^{*}$ HX group on G its unit element just E .

Theorem2.4. [1] Let f be a homomorphism from G to another group G^{\prime}. We have
(i) If g is a HX group on G , then $g^{1}=\{\mathrm{f}(\mathrm{A}) / \mathrm{A} \in \mathrm{g}\}$ is a HX group on G^{\prime} and $g \sim^{1}$
(ii) Let f be a surjection. If g^{1} is a HX group on G^{\prime}, then
$g=\left\{\mathrm{f}^{-1}\left(A^{\prime}\right) / A^{\prime} \in g^{1}\right\}$ is a HX group on G and g~ 9^{1}
Proposition 2.1. [1] Let g be a HX group on G, and $\mathrm{B} \subset 2^{\mathrm{G}}-\{\phi\}$ with $\mathrm{B}^{2}=\mathrm{B}$. If B satisfies the condition: $(\forall A \in g)(A B=B A)$, then

$$
g_{B}=\{A B / A \in g\} \text { is a HX group }
$$

on G and $g-g_{B}$.
The proof is straight.

3. SOME RESULTS ON Bi-HX GROUP:

Theorem 3.1. If g is a Bi HX group on a Bi group G, then

$$
\begin{gathered}
\text { (i) }(\forall A \in g)(|A|=|B|) \\
\text { (ii) }(\forall A, B \in g) \\
(A \cap B \neq \phi \Rightarrow|A \cap B|=|E|)
\end{gathered}
$$

Proof. (i) $A \in g=g_{1} \bigcup g_{2}$.
Let $A \in g_{1}$ and g_{1} is a HX group on G_{1}.
Therefore, $|A|=|B|$
Similarly, $A \in g_{2}$ and g_{2} is a HX group on G_{2}.
$|A|=|B|$
Hence $(\forall A \in g)(|A|=|B|)$
(ii) Let $A, B \in g_{1}$. Since g_{1} is a $H X$ group on G_{1}

$$
|A \cap B|=|E|
$$

Similarly, $A, B \in g_{2}$. Since g_{2} is a HX group on G_{2}

Therefore $|A \cap B|=|E|$
Hence
$(\forall A, B \in g)$
$(A \cap B \neq \phi \Rightarrow|A \cap B|=|E|)$.

Theorem 3.2. Let $g=\left(g_{1} \bigcup g_{2},+, o\right)$ be a Bi HX group of a bi group $G=\left(G_{1} \cup G_{2},+, o\right)$. Then
(a) G^{*} is a sub-bi group of G
(b) $G^{o} \neq \phi \quad$ iff $\quad e_{1} \in G^{o}$ and $e_{2} \in G^{o}$ where e_{1} is the identity element of G_{1} and e_{2} is the identity element of G_{2} respectively.
(c) $\quad G^{o} \neq \phi$ iff G^{o} is a sub-bi group of G.

Proof. (a) Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}^{*}$. Then
(i) a, $\mathrm{b} \in \mathrm{G}_{1}{ }^{*}$, then there exists $A, B \in g_{1}$ such that $a \in A$ and $b \in B$.

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{b} \in \mathrm{~A}+\mathrm{B} \subset \mathrm{G}_{1}{ }^{*} \\
& \Rightarrow\left(\mathrm{G}_{1}{ }^{*},+\right) \text { is a group. }
\end{aligned}
$$

(ii) c, $\mathrm{d} \in \mathrm{G}_{2}{ }^{*}$, then there exists $C, D \in g_{2}$ such that $c \in C$ and $d \in D$.

$$
\begin{aligned}
& \Rightarrow \operatorname{cod} \in \mathrm{CoD} \subset \mathrm{G}_{2}{ }^{*} \\
& \Rightarrow\left(\mathrm{G}_{2}{ }^{*}, \mathrm{o}\right) \text { is a group. } \\
& \text { Clearly } \mathrm{G}^{*}=\mathrm{G}_{1}{ }^{*} \cup \mathrm{G}_{2}{ }^{*}
\end{aligned}
$$

Therefore, G^{*} is a sub-bi group of G .
(b) Obvious.
(c) Let $G^{o} \neq \phi$

Let $\mathrm{a}, \mathrm{b} \in G^{o}$
(i) Let $\mathrm{a}, \mathrm{b} \in G_{1}^{o}$

$$
\begin{aligned}
& \Rightarrow-\mathrm{a},-\mathrm{b} \in \mathrm{G}_{1}{ }^{*} \\
& \Rightarrow-(\mathrm{a}+\mathrm{b}) \in \mathrm{G}_{1}{ }^{*} \\
& \Rightarrow \mathrm{a}+\mathrm{b} \in G_{1}^{o}
\end{aligned}
$$

Therefore $\left(G_{1}^{o},+\right)$ is a group.
(ii) Let $\mathrm{a}, \mathrm{b} \in G_{2}^{o}$

$$
\Rightarrow \mathrm{a}^{-1}, \mathrm{~b}^{-1} \in \mathrm{G}_{2}^{*}
$$

$$
\Rightarrow(\mathrm{ab})^{-1} \in \mathrm{G}_{2}{ }^{*}
$$

$$
\Rightarrow \mathrm{ab} \in G_{2}^{o}
$$

$$
\Rightarrow\left(G_{2}^{o},+\right) \text { is a group. }
$$

Therefore $G^{o}=G_{1}^{o} \cup G_{2}^{o}$ is a sub-bi group of G .

Theorem3.3. Let f be a bi group homomorphism from G to another bigroup G^{\prime}. We have
(i) If g is a Bi HX group on a bi group G, then $g^{1}=$ $\{\mathrm{f}(\mathrm{A}) / \mathrm{A} \in \mathrm{g}\} \quad$ is a Bi HX group on G^{\prime} and $\mathrm{g} \sim \mathrm{g}$ 1
(ii) Let f be a surjection. If g^{1} is a Bi HX group on G^{\prime}, theng $=\left\{\mathrm{f}^{-1}\left(A^{\prime}\right) / A^{\prime} \in \mathrm{g}^{1}\right\}$ is a Bi HX group on G and $g \sim g^{1}$.

4. CONCLUSIONS

Further work is in progress in order to develop the Fuzzy Bi-HX group and Anti Fuzzy Bi-HX group.

REFERENCES

[1] LiHongxing, HX group, BESEFAL, pp(31-37).
[2] LiHongxing, Hypergroup (I), BESEFAL, 23(1985), pp(22-29).
[3] Hall,M., The Theory of Group, Macmillan, New York, 1959.

