
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.3, November 2010

5

A Modified and Memory Saving Approach to B+ Tree Index

for Search of an Image Database based on Chain Codes

Sabina Priyadarshini
Department of Information Technology

Birla Institute of Technology
Mesra, Ranchi

 Gadadhar Sahoo
 Department of Information

Technology
Birla Institute of Technology

Mesra, Ranchi

ABSTRACT

Space savings is a demand of these days. Almost all applications

are trying to represent their data in the least possible amount of

space. It is the goal of all algorithms to consume as less memory

as possible in the computer. Many techniques have been

developed to compress large bulk of data so that large amount of

information can be accommodated in lesser amount of space. The

proposed approach called Coded B+ tree is a modified approach

to the conventional B+ Tree index and can be applied only to

chain codes of images and to a search of an image database based

on chain codes of images as its search key value. The proposed

method brings about considerable space savings of more than a

half at the cost of 4 to 5 more comparisons. It is a useful

technique of indexing for systems that require saving memory

spaces.

General Terms

Image data base indexing, Digital Image Processing, Content

Based Image Retrieval.

Keywords

chain codes, indexing technique, space savings, efficient search,

coding of index.

1. INTRODUCTION
A B+ Tree index is a type of tree that represents sorted data in a

way that allows efficient insertion, retrieval and removal of

records, each of which is identified by a key. It is a balanced tree

in which every path from the root of the tree to the leaf of the tree

is of the same length. It provides good performance but has space

overhead too[1].

In this paper, a modified approach to B+ Tree index has been

proposed for indexing an image database based on chain codes as

its search key field. This new approach reduces the space

overhead of the B+ Tree index to a large extent at the cost of only

three to five more comparisons.

The paper is organized as follows. Section 2 gives the Literature

Review. Section 3 discusses the chain code of images. Section 4

describes the B+ tree index. The proposed approach has been

given in Section 5. Section 6 gives a comparison of the

conventional B+ tree index and the modified approach used in

terms of space overhead and total number of comparisons. Section

7 gives advantage of the Coded B+ tree indices. Section 8 gives a

conclusion.

2. LITERATURE REVIEW
Many researchers have come up with different techniques to

search an image database. Different types of indices have been

built and different search strategies have been proposed. The

works done by the different researchers are discussed below.

Guttman[2] has suggested an R-Tree as a height balanced tree

with index records in its leaf nodes containing pointers to data

objects. This enables a spatial search to visit only a small number

of nodes. The index is dynamic in nature. The structure performs

very well and is useful for database systems in spatial

applications.

Bayer et. al [3] discuss simple prefix B-trees and prefix B-Trees.

Both the methods store only parts of keys called prefixes in the

index part of a B*-tree. The prefixes are selected carefully to

minimize their length. Prefixes are not fully stored but are

reconstructed as the tree is searched. It combines the advantages

of B-trees, digital search trees and key compression techniques.

Lin et al. [4] have proposed a new index structure based on R-

Trees that has been designed to improve query efficiency with the

strategy of increasing space to reduce time. Interior nodes have

been made to contain data entries also. Data entry contains both

Minimum Bounding Rectangle and Maximum Enclosed Circle of

spatial data object. It performs better than R-Trees.

Wei et. al [5] propose a methodology to control the access of B+

Treee indexed data in a batch and real time fashion. The number

of disk I/O operations required is reduced and system

performance is improved without introducing priority inversion.

For situations where timing constraints are important, a data

reservation mechanism has been described.

Bumbulis [6] has presented an improved index creation method

based on a path-compressed binary tree in a database system

comprising of database tables and indexes on those tables. A path

compressed binary tree for the given index is determined. It is

made up of internal nodes and leaf nodes. An index is created

comprising a first array of internal nodes encountered during the

traversal and a second array of leaf nodes encountered during

traversal. The database system employs said first and second

arrays for a given key value.

3. CHAIN CODE
A chain code is a form of encoding a boundary. The boundary is

converted into a connected sequence of straight line segments of

specified length and direction. Each segment’s direction is coded

by a numbering scheme as shown in Figure 1. The sequence of

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.3, November 2010

6

numbers so generated is called a Freeman chain code. There are

two types of chain codes:

1. 4-directional chain code

2. 8-directional chain code

A 4-directional chain code has four directions and provides the

numbers 0,1,2 and 3 for the four directions as shown in Figure 1

(a). An 8-directional chain code has eight directions and provides

the numbers 0,1,2,3,4,5,6 and 7 for the eight directions as shown

in Fig ure1(b).

 Figure 1(a) 4-directional chain code

 Figure 1(b) 8-directional chain code

The chain code of any image region boundary is computed by

taking a starting pixel and moving in counterclockwise or

clockwise direction, traversing the region edges and coding each

direction using the Freeman chain code direction codes. For

example, consider the rectangle drawn in Figure 2. It will be

coded starting from the point (1,1) using 4-direction chain code.

The rectangle is coded by traversing through it in

counterclockwise direction going to point (2,1) , followed by (3,1)

and so on, and coding each direction as we move from one pixel

to the next one. Therefore, the chain code obtained is

000011222233.

0 1 2 3 4 5 6 7 8 9

 Figure 2. Rectangle shape on grid space

4. B+ TREE

A B+ tree index structure is the most widely used index structure.

It is very efficient. It is represented by a balanced tree in which

every path from the root of the tree to a leaf of the tree is of the

same length. A node of a B+ tree contains upto n-1 search key

values and n pointers. The search key values within a node are

kept in sorted order. For example, if K1, K2, K3, ….Kn are the

search key values and n pointers P1, P2, P3, ……..Pn are there,

then Ki <Kj and the node looks like as shown below in Figure. 3.

 Figure 3. B+ Tree node

In the leaf node, pointer Pi points to either a file record with

search key value Ki or to a bucket of pointers, each of which

points to a file record with search key value Ki. Non leaf nodes do

not contain data pointers. They only contain tree pointers and key

values [1].

4.1 Space Overhead of a B+Tree and Number

of Comparisons

The space taken by a B+ tree is of O(n) where n is calculated as

follows:

 n= bh-bh-1

where b is the order of the tree and h is the height of the tree.

The order of the tree is computed as follows:

Index node size = floor (b*(tree and data pointer size) + (b-1)

*search key size)

 where b is the order of the tree.

The height of the tree is calculated as follows:

1

0

3

2

2

0

1 3

4

5

6

7

P1 K1 P2 ……… Pn-1 Kn-1 Pn

1

3

2

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.3, November 2010

7

h > (1+log n-log(b-1))/ log b.

where n is the total number of records , b is the order of the tree

and h is the height of the tree.

The total number of comparisons is calculated as follows:

Log (s/2) (total number of records in the database) where s is

calculated as follows:

s=disk block size/(search key size+ pointer size).

5. CODED B+TREE: THE PROPOSED

APPROACH

The proposed approach suggests some added steps to B+ tree

index for indexing an image database based on its chain codes.

The approach works for chain codes of length of twenty

characters. It can also work for chain codes that are longer than

twenty characters. In such cases, the first twenty characters of the

chain code are extracted from the entire chain code and then used.

However, in this paper, twenty character chain codes are used for

demonstrating the proposed work.

First the different twenty character chain codes present in the

database are taken and converted into their corresponding index

codes. Index codes are discussed in the subsection 5.1 below. As a

second step, a B+ tree index structure is built on these index

codes. The index codes reduce the space overhead needed by the

B+ tree structure to quite a good extent.

5.1 Index Code

Index codes represent any four characters of the chain code in

only two characters. All four-character combinations of the chain

code are provided with a corresponding two character index code.

The index code table has been depicted in Table 1 to show the

index codes for the four-character chain codes.

Any character of the chain code can be in the range 0 to 7.

Therefore, there can be 4096 types of four-character chain codes

where each character can be a number in the range 0 to 7 (8 x 8 x

8 x 8 =4096). Each of these 4096 types is provided with a

corresponding two character index code.

Table 1. The Index Code Table

 Four Characters of the Chain

Code

Index Code

0001 01

0002 02

0003 03

0004 04

0005 05

and so on upto 4096 rows.

The index codes are provided for the 4096 chain codes, each of

four characters, in the following way:

The first 99 four-character chain codes are given the values from

00 to 99 which are two digits decimal numbers treated as two

characters. The next 676 four-character chain codes are given the

values in a sequence from AA to AZ, BA to BZ and so on upto

ZA to ZZ. Then, the next 676 four-character chain codes are given

values from aa to az, ba to bz, and so on upto za to zz. Then, the

next 260 four-character chain codes are given values as A0 to A9,

B0 to B9 and so on upto Z0 to Z9. The next 260 four-character

chain codes are given values from 0A to 9Z, 0B to 9B, and so on

upto 0Z to 9Z. Then, the next 1040 four-character chain codes are

represented by two-character index code formed by an uppercase

alphabet followed by a special character. Forty special characters

are taken into consideration for the same. Then, the next 1040

four-character chain codes are represented by two-character index

codes formed by a special character followed by an alphabet.

Finally, the next 45 four-character chain codes are formed by

taking lowercase alphabets followed by special characters.

Therefore, 99+676+676+260+260+1040+1040+45=4096 four-

character chain codes are assigned two character index codes

each.

5.2 The B+ Tree Construction

The B+ Tree structure is built in the following steps:

Step 1:As the first step, all the different twenty character chain

codes present in the image database are extracted.

Step 2: For each twenty-character chain code so obtained, the

following steps are performed:

(a)Each twenty-character chain code is divided into five

sequential sets of four-character chain codes.

(b)Index codes for all these five sets are fetched from the

index code table and written in a sequence.

(c)The code so obtained is the coded version of the twenty-

character chain code and is used as the search key value for the

construction of the B+ tree. The size of the coded version of the

chain code is ten characters.

Step 3: Similarly, for all chain codes in the database, the

corresponding index codes are obtained by the Step 2 procedure.

Step 4: The coded version of the chain codes so obtained are used

for the construction of the B+ tree structure. The tree so

constructed is called as Coded B+ tree.

Step 5: The leaf nodes of the B+ tree contain pointers to matching

records in the image database.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.3, November 2010

8

It is to be noted that a B+ tree index structure is built on the Index

Code table. So, the search of index codes in Step 2 (b) is done

using B+ tree index structure.

6. COMPARISON

A comparison of space overhead and total number of comparisons

required by the coded B+ tree and the conventional B+ tree is

given as follows :

6.1 Space Overhead

6.1.1 The Coded B+ tree:
The modified approach uses a search key value of size of 10

characters i.e.10 bytes. The pointers are 2 bytes and disk block

size is 4KB or 4000 bytes. The order of the tree is calculated as

follows:

b*2+(b-1)*20=4000 which means b=334.

Since the chain code length is 20 characters and it is assumed that

chain code field in the database is a key field, so, the total number

of records in the database is taken as 820 .Height of the tree

is calculated as follows:

h=1+log(820)-log(333) /log(334)= 6.553 equivalent to 7.

The total space overhead is 3347-3346= 4.622990855 17

An index code table’s B+ tree size is added to this figure. The

total space overhead therefore, is as follows:

4.622990855 17 +666=4.62299E+17

6.1.2 The conventional B+ tree:

The conventional B+ tree makes use of a search key size of 20

characters. The disk block size is 4000 bytes and pointer size is 2

bytes. The order of the tree is calculated as follows:

b*2+(b-1)*20=4000

b=183

Height of the tree is calculated as follows:

h=1+log(820) – log(182)/log(183)=7.426338818 equivalent to 8.

So, total space overhead is given as follows:

Total space= 1838-1837=1.25092E+18

Therefore, the total space savings achieved by Coded B+ tree is

1.25092+18 - 4.62299E+17 = 7.88621E+17

6.2 Total Number of Comparisions

6.2.1 Coded B+ Tree
The search key size is 10 bytes. The pointer size is 2 bytes and the

disk block size is 4000 bytes. So, the total number of comparisons

for the coded B+ tree is calculated as follows:

S=4000/12=334

Log[334/2](8
20)= 7.156740971 equivalent to 7 comparisons.

The total number of comparisons needed to find 5 index codes for

five sets of four character chain codes is 6 to 7.

Therefore, in all, the total number of comparisons that would be

needed is 7+6=13 to 7+7=14, i.e. around 13 to 14 comparisons.

6.1.2 Conventional B+ Tree
 S=4000/22=182

Log[182/2] (8
20)=9.219713177 equivalent to 9 comparisons.

Therefore, there are 4 to 5 more comparisons required in case of

Coded B+ Tree index structure when compared with the

conventional B+ tree.

7. ADVANTAGE OF CODED B+TREE

These days, compression techniques are being applied widely to

reduce the size of data to be stored so that the least amount of

memory is needed to store a bulk of data. Although, the total

number of comparisons required by Coded B+ tree is slightly

increased, but, the space needed by the Coded B+ tree is much

lesser and is therefore, a useful technique of indexing for systems

where data needs to be stored in the least possible amount of

space, consuming as less memory as possible. If compression

techniques are applied to B+ trees, they also take added

computation effort and time for compression and decompression.

8. CONCLUSION

The Coded B+ tree is a B+ tree that can be applied to chain codes

of images to search the image database based on chain codes as its

search key value. It reduces the space overhead to more than a

half. The technique proves to be helpful and useful in memory

space savings which is a great demand these days. The Coded B+

tree can be extended with better compression techniques and it

can be reduced further to an even smaller size.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.3, November 2010

9

9. REFERENCES

[1] Silberschatz A., Korth H.F, Sudarshan S ,2006.

Database system Concepts” ,Fifth Edition, Mc Graw

Hill International Edition, pp 481-503.

[2] Guttman A., 1984 R-trees: A dynamic index structure

for spatial searching, in Proc. of ACM SIGMOD,

Boston, MA, pp. 47–57.

[3] Bayer R., Unterauer K. 1977. Prefix B- Trees, ACM

Transactions on Database Systems, Volume 2, no. 1,

March 1977, Page 11-26.

[4] Lin Weihua Huazhong, Wu Yonggang, Tan Xiajun,

2008. An improvement of Index Method and Structure

based on R-Tree, Proceedings of International

Conference on Computer Science and Software

Engineering, 2008, Volume 4, pp 607-610, 2008, IEEE

Computer Society, Washington DC,USA, ISBN:978-0-

7695-3336-0

[5] Wei Chih-Hung, Kam-Yiu-Lam 2000. Real Time Data

Access Control on B-Tree Index Structures, Sydney,

Australia, March 23-26, ISBN-0-7695-0071-4. , Real

Time Systems, 19,245-282 (2000), 2000 Kluwer

Academic Publishers, Boston, Manufactured in

Netherlands.

[6] Bumbulis P. 2003. System and methodology for

providing compact B-Tree, US Patent Application

Publication, Publication no.: US2003/0204513 A1,

publication date: October 30,2003.

