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ABSTRACT 
A critical and important stage in microstructure image analysis is 

segmentation, because the segmentation method has direct impact 

on the end results of analysis. The main aim of this paper is to 

determine appropriate segmentation method for microstructure 

image analysis and quantification. In this work, some popular 

segmentation methods, namely, Otsu’s automatic threshold, 

watershed, uni-grid active contour method and multi-grid active 

contour methods have been investigated. The reliability of the 

segmentation methods is tested by determining the volume 

fraction of phases present in microstructure images of materials of 

known chemical composition. The experimentation is done using 

microstructure images of cast iron of various compositions. The 

experimental results are compared with expected values of volume 

fraction. The active contour multi-grid segmentation model is 

found to yield better results within the practical limits as 

compared to manual and other automated methods.  

Keywords: phase of material, microstructure, metallograph, 

knowledge-base, volume fraction, watershed, active contour. 

 

1. INTRODUCTION 
It is well known that there is direct relationship between the 

microstructure and the properties of the material.  Metals are 

crystalline when they are in the solid form. The crystal structure of 

a solid metal refers to the internal structure or arrangement of the 

atoms in an ordered, periodic, 3D pattern. Normal metallic objects 

are polycrystalline, which means they consist of an aggregate of 

many minute crystals. These crystals are called grains. Some 

metallic objects, such as castings, have very large grains that can 

be resolved with the naked eye and these structures are referred to 

as macrostructures. Typically, the grains of a metal object are very 

small, and can not be viewed with the naked eye. The structural 

features of the small grains are observed using an optical 

microscope or metallograph, or an electron microscope, at 

magnifications greater than 100 times.  Structures requiring this 

range of magnification for their examination are called 

microstructures. Some sample microstructure images are shown in 

Fig 1. 

      

Fig 1.Sample microstructure images of cast iron showing the 

two phases, pearlite and ferrite. 

The macrostructural and microstructural examination techniques 

are employed in areas such as routine quality control, failure 

analysis and research studies. In quality control, microstructural 

analysis is used to determine if the structural parameters are 

within certain permissible limits. It is used as a criterion for 

acceptance or rejection. The microstructural features, normally, 

are grain size, amount of impurities, second phases, porosity, 

segregation and volume fraction of a phase or defects present.  

 

1.1 Phase of material and its volume fraction 

 
In the materials science, the word "phase" usually refers to the 

particular arrangement of atoms in a material [3]. For example, the 

atoms in a piece of cast iron can form different   arrangements, 

depending on its temperature and purity. For example, a piece of 

cast iron that contains a mixture of graphite and ferrite could be 

called a two-phase material with graphite (pearlite) and ferrite as 

its two phases. 

The volume fraction is an important measure of relative amount of 

a phase in a material. The phase in a material is governed by the 

chemistry and the processing history of the material. Many 

properties of the materials depend on the constitution of different 

phases in a material. For example, the tendency of delayed 

cracking of quenched material depends on the relative amount of 

retained austenite (phase). By knowing the chemical composition 

of the material, the volume fraction of a phase, like graphite, in 

cast iron is computed by using the formula (1) [3]: 

 

                      (1) 

 

where  is carbon content. There are many manual methods, in 

practice, for quantitative microscopy such as line intersection 

method, circle intersection method [3] and many more. Digital 

image processing techniques offer better alternative methods, 

which minimize human efforts and, also, save a lot of time. For 

digital measurement, the following relation is used for volume 

fraction [3]: 

  ,                                                  (2) 

 

where   is the number of pixels that belong to the phase being 

analyzed, and  is the total number of pixels in the image.  
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1.2 Importance of segmentation stage in 

microstructure image analysis 

In most image analysis operations, pattern classifiers require 

individual objects to be separated from the background in the 

image. The description of those objects needs to be transformed 

into a suitable form for computer processing. Image segmentation 

is a fundamental task  responsible for such operation. The function 

of segmentation is to partition an image into its constituent and 

disjoint sub-regions, which are uniform according to their 

properties, e.g. intensity, color, and texture. Segmentation 

algorithms are generally based on either discontinuity among sub-

regions, i.e. edges, or uniformity within a sub-region, though there 

are some segmentation algorithms relying on both discontinuity 

and uniformity. 

The segmentation critically affects the results of classification and 

quantification in microstructure image analysis. It often 

determines the eventual success or failure of the image analysis. 

The level to which segmentation is carried depends on the 

problem being solved. That is, segmentation should stop when the 

region of interest (ROI) in the application has been isolated. Due 

to this property of problem dependence, segmentation is one of the 

most difficult tasks in image analysis. Noise and mixed pixels 

caused by the poor resolution of sensor images make the 

segmentation problem even more difficult and quantification 

results are often disagreed.  In this paper, we examine the 

performance of four popular segmentation methods, namely, 

Otsu’s optimum threshold [5], watershed [4,14,15], active 

contours [8,11,12]. 

1.3 Background literature 

Many efforts have been made to achieve the optimum results in 

image segmentation. To mention a few, the threshold based 

method is proposed by Otsu [5]. Contour-based segmentation 

methods are also of interest of many authors and, among them, 

Marr-Hilderth method is discussed in [10]. Edge detection 

techniques are discussed by Canny in [11]. A series of 

morphological operations for segmentation of microstructures are 

effectively used in [6,7]. But these methods are dependent on the 

selection of appropriate size of structural element. The object 

identification by using snakes, shapes and gradient vector flow is 

discussed by Michael Kass [12]. The active contour based method 

is discussed by Chan and Vese in [8] and an improved active 

contour multi-grid model is discussed by G. Papandreou and 

P.Maragos [20].  The minimum distance classifier for phase 

discrimination is discussed in [13]. Various contour based and 

region based methods are extensively discussed in [1,2,4]. With 

this background and motivation, it is felt that a  robust 

segmentation method for microstructure analysis is due. The 

segmentation method should be fully automatic, robust and should 

provide good segmentation results irrespective of variations in 

image quality and magnifications.  

1.4 Materials used 

We have used the microstructural images of low-carbon steel (cast 

iron) captured by using light microscope. The images are of size 

200x200 pixels. The samples are taken from steel bars that have 

graphite and ferrite phases. Images are of various resolutions (i.e. 

magnifications) and chemical compositions.  The etching medium 

used for preparing specimen is 3% alcoholic nitric acid. 

2. SEGMENTATION TECHNIQUES 
We consider the segmentation techniques, namely, Otsu’s 

optimum threshold, watershed segmentation and active contour 

methods (both uni-grid and multi-grid), for investigating the effect 

of segmentation on classification and quantification of phases of 

material in a cast iron sample. The motivation for selection of 

these segmentation methods for investigation is; as these methods 

are of general choice of many researchers for the segmentation of 

images in many image processing applications. Their 

characteristics can vary significantly according to the specific 

application and imaging modality. Currently, no single existing 

segmentation scheme will yield acceptable results over the entire 

spectrum of image types that may be contemplated. A blind 

selection of a popular segmentation method without a proper study 

can significantly influence the quantification results. It is 

imperative to study and propose a suitable segmentation method 

among the popularly used segmentation methods for the automatic 

quantification of material phases of cast iron. 

2.1 Otsu’s optimum threshold  
We use the Otsu’s optimum segmentation method [5] based on 

thresholding, in which we choose the threshold to minimize the 

interaction variance of the thresholded black and white pixels. It is 

based on selecting the lowest point between two peaks of gray 

level intensity in the histogram of the image. The algorithm 

assumes the image to be thresholded and containing two classes of 

pixels (e.g. foreground and background). Then it calculates the 

optimum threshold separating those two classes so that their 

combined spread (intra-class variance) is minimal. 

2.2 Watershed segmentation 
The term watershed refers to a ridge that divides areas drained by 

different river systems. A catchment basin is the geographical area 

draining into a river or reservoir. In this method, image is treated 

as topographical surface, low intensity values in the image form 

the catchment basins and high intensity values form the ridges that 

separate the adjacent catchment basins [4,14,15].  

2.3 Active contour  
Snakes or active contours, are curves defined within an image 

domain that can move under the influence of internal forces 

coming from within the curve itself and external forces computed 

from the image data. The internal and the external forces are 

defined so that the snake will confirm to an object boundary or 

other desired features within an image. Snakes or active contour 

models they lock onto nearby, edges, localizing them accurately. 

Scale-space continuation can be used to enlarge the capture region 

surrounding a feature. The basic idea in active contour models or 

snakes is to evolve a curve, subject to constraints from a given 

image , in order to detect objects in that image. For instance, 

starting with a curve around the object to be detected, the curve 

moves toward its interior normal and has to stop on the boundary 

of the object.  Snakes provide a unified account of a number of 

visual problems, including detection of edges, lines, and 

subjecting contours; motion tracking; and stereo matching. 

 

Let C be a planar curve with length L(C) and 

 its arc-length parameterization; also 

let I be an intensity image. In geodesic active contours, curve’s 

geodesic length will be minimized [19] 
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EC=                                (3) 

 

where the edge indication function  is a 

decreasing function of  (other measures of edge strength can 

also be used), such that  as  

Minimization of the functional in Eq. (3) by means of variational 

techniques leads to an Euler-Lagrange partial differential equation 

(PDA); to reach local minima, we start with an initial contour and 

evolve it in the direction of steepest decent, introducing a pseudo-

time variable ‘t’. Numerical implementation of the geodesic active 

contour model using level sets [18] naturally allows for changes in 

the contour’s topology, permitting splits and merges. In the level 

set framework, the moving contour C(t) is defined implicitly as 

the zero level set of an embedding scalar function u with domain 

the whole image plane, i.e. , where 

. By convention, assign negative 

values to the interior and positive values to the exterior of the 

courve. The signed distance function from the contour is often 

chosen for extending  away from the curve due to its good 

numerical properties.  

The corresponding geometric active contour level set evaluation 

law is  

 

   (4) 

 

where, α and β are positive weights. Since f is also unknown, it 

needs to be re-estimated as the front moves. In the Chan-Vese 

model, where the image intensity is assumed piecewise constant, 

the curve evolves by 

 

  (5) 

 

Multigrid numerical methods employ a hierarchy of grids of 

different mesh sizes to efficiency solve a wide range of problems, 

most notably those arising from PDE models [17].  Multi-grid 

techniques overcome the typically slow convergence properties of 

conventional uni-grid iterative methods.  In this work, we have 

employed and compared both uni-grid and multi-grid techniques. 

 

3. FEATURE EXTRACTION 
The features of the regions of interest (ROIs), namely, graphite 

and ferrite, are the mean and standard deviation of intensity values 

of pixels belonging to these regions. Initially, a knowledge base of 

feature values of pearlite and ferrite phases in microstructure 

images of known chemical composition of low-carbon steel is 

built. The knowledge base is given in the Table 1 [16]. 

Table 1. Knowledge-base of feature values for graphite and ferrite 

phases in microstructure images of cast iron. 

Phase Otsu Watershed Active contour 

Mean 

(M) 

Std.  

Dev. 

Mean 

(M) 

Std. 

Dev. 

(SD) 

Mean 

(M) 

Std. 

Dev. 

(SD) 

(SD) 

Grap- 

hite 
< 170 17 < 190 21 < 166 19 

Ferrite > 220 10 > 210 16 > 210 14 

 

The Table 1 is used to identify graphite and ferrite phases present 

in the test images. The algorithm for classification and 

quantification of phases of material is given below. The feature 

vectors f(library) = (M,SD) for graphite and ferrite are stored in 

the feature library (knowledge-base). 

 

Algorithm 1: Training  
Step  1. Input the grayscale microstructure image  (training 
image). 

Step  2. Apply preprocessing methods, namely, circular averaging 
filter with radius 0.5  (empirical value), dilation of filtered image. 

Step  3. Apply the segmentation method on pre-processed image 

of Step 2 and obtain binary image. Perform segment labeling of 
the binary image. 

Step  4. Compute the statistical features, namely, the mean (M) 

and standard deviation(SD) of intensity values of pixels  in labeled 

segments known to be graphite region or ferrite region. Form 

feature vectors f1 =(M,SD) and f2  =(M,SD) for each graphite and 
ferrite segment, respectively. 

Step  5. Repeat Steps 1 to 4 for all the training images and 

compute the average of all the feature vectors f1 and f2 of all the 

images, and store them as f1(library) and f2(library)  in the knowledge-
base. 

Algorithm 2: Testing  
Step  1: Input the grayscale microstructure image (test image). 

Step  2: Apply preprocessing methods, namely, circular averaging 
filter with radius 0.5  (empirical value), dilation of filtered image. 

Step  3: Apply the segmentation method on pre-processed image 

of Step 2 and obtain binary image. Perform segment labeling of 
the binary image. 

Step  4: For each labeled segment, compute the statistical features, 

namely, the mean (M) and standard deviation (SD) of intensity 
values of pixels and form feature vector f(test) =(M,SD). 

Step  5: Compute the Euclidean distance  between the feature 

vector f(test) of each segment of test image and feature vectors 

f(library) stored in the feature library. 

–  

Step  6: Apply minimum distance classifier to classify the labeled 

segments as graphite and ferrite phases. Compute the total area 
occupied by each phase in the image. 

Step  7: Compute volume fraction  for both phases in the input 

image using the equation (2). 

Step 8 :  Repeat Steps 1 to 7 for all the test images and compute 

the average volume fraction  of each phase for the sample 

material, which is the estimation of the volume fraction of the 
phases. 
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The above algorithms are implemented by using four different 

segmentation methods, namely, Otsu’s optimum threshold 

method, watershed method, uni-grid active contour method and 

multi-grid active contour method, in the Step 3. However, in case 

of active contours (both, in uni-grid and multi-grid), the 

preprocessing operations of Step 2 are not employed. The 

performance of four segmentation methods in terms of accuracy of 

volume fraction is compared. 

 

4. EXPERIMENTAL RESULTS 
For experimentation, we have used 100 microstructural images of 

low-carbon steel samples taken from steel bars, with graphite and 

ferrite phases, captured using light microscope. Images are of size 

200x200 pixels. The etching medium used for preparing specimen 

is 3% alcoholic nitric acid. These images are obtained from the 

microstructure library [9]. We have used 75 microstructure images 

for building knowledge-base and remaining are used for testing. 

We have employed Otsu’s optimum thresholding, watershed and 

active contour methods (uni-grid and multi-grid) of segmentation 

on the same set of images and computed the volume fraction using 

the equation (2). In the case of active contour multi-grid model, 

the multi-grid model is initiated by multi-grid circular masks (as 

shown in Fig. 2) on whole image to obtain segmented regions in 

the image.  

 
Fig. 2 Multi-grid circular mask 

 
The segmentation results are shown in the Fig. 3 and the 

computed volume fraction of the graphite and ferrite phases are 

shown in the Table 2. 

 
Original 

Microstruct

ure images 

   
SEGMENTATION RESULTS 

Otsu’s 

Threshold 

ing 
   

Watershed 

   

Active 

contour 

(uni-grid) 
   

Active 

contour 

(multi-grid) 
   

 

Fig 3. Segmentation results of four methods 

Table 2. Comparison of volume fraction  of phases 

obtained by using proposed method and expected volume 

fraction ( ) for different segmentation methods. 

 

 
The rate of classification of phases is 100% and the quantification 

results are very close to the corresponding expected values. The 

average quantification error is 0.8% for graphite and 2.3% for 

ferrite. The comparison of error in computed volume fraction 

values with expected values for both phases obtained by different 

segmentation methods is shown in Fig. 4 and Fig. 5.  

 
Fig 4. Comparison of error in computed volume fraction 

values with expected values for graphite obtained by three 

segmentation methods. 
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Fig 5. Comparison of error in computed volume fraction 

values with expected values for ferrite obtained by three 

segmentation methods. 

 
It is observed that the estimation of volume fraction  of 

phases in microstructure images using multi-grid active contours 

segmentation method is more accurate, as compared to other 

methods, despite heavy noise in the input microstructure images. 

In Otsu’s optimum thresholding and watershed segmentation 

methods, the pre-processing plays a vital role in achieving good 

segmentation results. In the case of microstructures having fine 

grain structures, it is observed that over estimation of volume 

fraction is due to over segmentation owing to heavy noise content. 

But multi-grid active contours segmentation method performed 

well even in the case of heavy noise present in microstructure 

images. Multi-grid techniques overcome the typically slow 

convergence properties of conventional uni-grid iterative methods. 

While uni-grid relaxation procedures are particularly effective at 

eliminating the high spatial frequency part of error, they suppress 

very slowly its low-frequency part. This behavior stems from the 

local nature of computations in uni-grid methods, which allows 

attenuation of error components that vary on scales comparable to 

the discretization mesh grid size h, but prevents quick suppression 

of larger scale errors. As discretization grids gets finer, 

information propagates even more slowly and the local effects of 

uni-grid methods become more pronounced. Multi-grid cycles 

overcome these difficulties by employing conventional relaxation 

procedures, called as smootheners in multi-grid terminology, in a 

hierarchy of grids. Since relaxation performed at each resolution 

level smoothens the error component at scales comparable to the 

grid size of this level, one multi-grid can effectively eliminate 

error component at the whole range of frequencies. Moreover, 

applying a relaxation procedure at coarse scales cause 

significantly less than applying it at fine scales, since less 

variables are involved, which makes active contour method as 

more robust method for automatic classification and quantification 

of phases of material. 

 

5. CONCLUSIONS 
In this paper, we investigate the performance of segmentation 

methods for automatic quantification of material phases of cast 

iron, in order to determine appropriate segmentation method for 

microstructure image analysis and quantification. Some popular 

segmentation methods, namely, Otsu’s automatic threshold, 

watershed and active contour methods, both uni-grid and multi-

grid, have been investigated. The reliability of the segmentation 

methods is tested by determining the volume fraction of phases 

present in microstructure images of materials of known chemical 

composition. The experimentation is done using microstructure 

images of cast iron of various compositions. The experimental 

results are compared with expected values of volume fraction. The 

multi-grid active contour segmentation method is found to yield 

better results within the practical limits as compared to other 

methods, which makes active contour method as more robust 

method for automatic classification and quantification of phases of 

material. Although, the quantification results obtained using uni-

grid and multi-grid active contour segmentation methods are very 

close, but it is observed that the uni-grid active contour 

segmentation method requires more segmentation time. 
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