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ABSTRACT 

The inverted pendulum is a highly nonlinear and open loop 

unstable system. To develop an accurate model of the inverted 

pendulum, different linear and nonlinear methods of identification 

will be used. However one of the problems encountered during 

modeling is the collection of experimental data from the inverted 

pendulum system. Since the output data from the unstable system 

does not show enough information or dynamics of the system. 

This can be overcome by designing a feedback controller , which 

stabilize the system before identification can takes place. Recently  

Takagi-Sugeno (T-S) fuzzy modeling based on clustering 

techniques have shown great progress in identification of 

nonlinear systems. Hence in this paper, Takagi-Sugeno (T-S) 

model is proposed for an inverted pendulum based on fuzzy c-

means , Gustafson-Kessel (G-K) and Gath-Geva (G-G) clustering 

techniques. Simulation results show that Gustafson-Kessel (G-K) 

clustering technique produces satisfactory performance. 

General Terms 
Fuzzy logic, Modeling. 

Keywords 
Nonlinear, Clustering, Fuzzy, Inverted Pendulum, Takagi-Sugeno. 

1. INTRODUCTION 
Fuzzy control system, identification and design have been a 

subject of intense research in recent years. The heart of a fuzzy 

control system consists of a set of fuzzy “if – then” rules, which 

models the process state-control action relationship in the control 

domain. The design of appropriate fuzzy rules and membership is 

a critical bottleneck in developing powerful fuzzy control systems.  

Membership functions and fuzzy rules can be defined by the 

model developer (expert), using prior knowledge, or by 

experimentation, which is a typical approach in knowledge based 

fuzzy control [1]. Knowledge acquisition however is, a 

cumbersome task, and for (partially) unknown systems, human 

experts are not available. Therefore, data-driven construction of 

fuzzy membership function and rules from measured input - 

output data has received a lot of attention. Such modeling 

approaches typically seek to optimize some numerical objective 

function, while less attention is paid to the complexity of the 

resulting model in terms of the number of membership functions 

and rules, Babuska [2]. Takagi- Sugeno [3] proposed a heuristic 

method for designing Takagi - Sugeno type of fuzzy rules from 

input-output data, using some performance index. Subsequently, 

Sugeno and Tanaka reported [4] a method for on-line 

identification of a fuzzy system. Recently, several proposals are 

made to use fuzzy clustering for fuzzy system identification. An 

effective approach is to partition the available data into subsets 

and approximate each subset by a simple piecewise linear model. 

Fuzzy clustering can be used as tool to partition the data where 

transitions between the subsets are gradual [5]. Sugeno and 

Yasukawa [6] uses the fuzzy c-means algorithm to cluster the 

output data points to determine the fuzzy rules, and use some 

heuristics to select the most relevant input variables in fuzzy 

system design. Bezdek [7] combines the ideas in [6] and [8] to 

develop a neural network fuzzy control system which also utilizes 

clustering. Typically, the specification of a real-world control 

problem is given by a finite set of input-output data points zk = [ 

xk, yk], and the design task is to extract optimum membership 

functions and  good set of fuzzy rules that best represent the 

input-output relationship in the data.  This paper address the 

design issue by demonstrating good performance of the fuzzy 

clustering-based methods, which identifies clusters from the 

input-output data and constructs membership function thereby 

generating a fuzzy rule for each cluster. In this paper, the inverted 

pendulum problem has been considered as a typical representative 

of inherently unstable nonlinear control systems, thus it is an ideal 

choice for testing the modeling capability of the fuzzy c-means, 

Gustafson-Kessel (G-K) and Gath–Geva(G-G)  clustering 

algorithms. Simulation results are presented using fuzzy modeling 

and identification toolbox [2]. The performance of the models 

obtained by fuzzy c- means ,G-K and G-G methods are compared 

in terms of RMSE.   

2. TAKAGI-SUGENO FUZZY MODEL 
Consider the identification of an unknown nonlinear system  

                                 )(xfy =                                       (1)  

based on some available input-output data 
T

k,nk,1k
]x,.....x[x = and ky . The index k=1,…,N denotes 

the individual data samples. While it may be difficult to find a 

model to describe the unknown system globally, it is often 

possible to construct local linear models around selected 

operating points. The modeling framework that is based on 

combining local models valid in predefined operating region is 

called operating regime-based modeling. In this frame work, the 

model is generally given by 

                        ∑ +=
=
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where )(i xφ is the validity function for the ith operating regime 

and 
T

i

T

ii ]ba[=θ is the parameter vector of the 

corresponding local linear model. The operating regimes can also 

be represented by fuzzy sets, in which case the TS fuzzy model is 

obtained [6] as  

]w[,bxay)x(AxR ii

T

iii +=
)

thenisIf:                                    

                               i=1,….c.                                  (3) 

here, the number of rules is denoted by c, )x(Ai  is a 

multivariable membership function, ai and bi are parameters of the 

local linear model as shown in Fig.1, and ]1,0[∈iw  is the 

weight of the rule. 

 

Fig. 1.   Local linear model and the membership function diagram. 

The value of iw is usually chosen by the designer of the fuzzy 

system to represent the belief in the accuracy of the ith rule. When 

such knowledge is not available iw =1, iA  is used. The degree of 

fulfillment of the rule can be calculated as the product of the 

individual membership degrees and the rule’s weight  

                 ∏==
=

n
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jj,iiiii
)x(Aw)x(Aw)x(β               (4) 

The rules are aggregated by using the fuzzy-mean formula 
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From (2) and (5), one can see that the fuzzy model is equivalent to 

the operating regime-based model when the validity function is 

chosen to be the normalized rule degree of fulfillment as 
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φ                           (6) 

Prior to clustering, the regression structure of the model is 

selected, in order to properly represent the system dynamics. 

Problems where little prior knowledge is available are usually 

represented in an input-output form. After the structure is 

determined, clustering in the product space of the regressors and 

of the regressand can be applied to partition the data. Since each 

cluster serves as a local linear model of the system, the fuzzy c-

means , Gustafson-Kessel (G-K) and Gath-Geva clustering 

algorithms are capable of detecting clusters which lie in linear 

subspaces. 

3. FUZZY MODEL IDENTIFICATION 

BASED ON FUZZY C-MEANS, G-K AND   

G-G CLUSTERING ALGORITHMS 

Forward and inverse modeling techniques helps to design model 

based control techniques like direct inverse, Internal Model 

Control and Model Predictive Control for nonlinear processes. 

These control techniques give satisfactory response when 

conventional control techniques fail. Hence, this necessitates the 

development of different modeling techniques based on fuzzy 

clustering. 

3.1 Fuzzy Partition 
 From the available input–output data pairs, the regression matrix 

X  and the output vector y are constructed as given by 

            ].N1
T

N1
T

y,...y[y]x,...x[X == and       (7) 

where N>>n is the number of samples used for identification. The 

antecedent fuzzy sets Ai in (3) are determined by means of fuzzy 

clustering in the product space of the systems input and outputs. 

Hence, the data set 
N)1n(

RZ
×+

=  to be clustered is 

represented as a (n+1)×N data matrix composed from X and y

   ]y,X[Z
T =                        (8) 

where each column ,
k

z N,...,2,1k =  of Z contains an  input-

output data pair as given by    

   
T

k

T

kk
]y,X[Z =                                            

Given Z and an estimated number of clusters ‘c’, fuzzy clustering 

partitions Z into ‘c’ fuzzy clusters. A fuzzy partition can be 

represented as an ‘N ×  c’ matrix U, whose elements )x(iφ ∈  [0, 

1] represents the membership degree of 
k

Z  in clusters ‘i’. Hence, 

the ith column of U contains the values of the membership 

function in the fuzzy partition, which is taken to be a point wise 

representation of the antecedent fuzzy set Ai of the ith rule as given 

in (3). The sum of each column of U is constrained to one, but the 

distribution of membership among the ‘c’ fuzzy subsets is not 

considered. Also, there can be no empty clusters and no cluster 
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may contain all the objects. This means that the membership 

degrees in the partition matrix U are normalized, and for the given 

identification data, the membership values )x(iφ  correspond to 

the normalized degree of fulfillment of the rule antecedents as 

given in (6). In this paper, membership functions extracted using 

fuzzy c-means , G-K clustering and Gath - Geva algorithms are 

discussed in detail. Each cluster forms one fuzzy rule. 

3.2  Cluster Validation 
Cluster validity refers to the problem whether a given fuzzy 

partition fits to the data all. The clustering algorithm always tries 

to find the best fit for a fixed number of clusters and the 

parameterized cluster shapes. However this does not mean that 

even the best fit is meaningful at all. Either the number of clusters 

might be wrong or the cluster shapes might not correspond to the 

groups in the data, if the data can be grouped in a meaningful way 

at all. Clustering data for different values of c, and using validity 

measures to assess the goodness of the obtained partitions. 

Different types of validity measure to find optimum number of 

clusters are given below 

3.2.1 Partition Coefficient (PC) 
It measures the amount of  “overlapping”  between cluster. It is 

defined by Bezdek as follows 

∑ ∑=
= =

c

1

N

1j

2
ij

i
)(

N

1
)c(PC µ

 
where µij is the membership of data point j in cluster i. The 

disadvantage of PC is lack of direct connection to some property 

of the data themselves. The optimal number of cluster is at the 

maximum value. 

3.2.2 Classification Entropy (C) 
It measures the fuzziness of the cluster partition only, which is 

similar to the partition coefficient. 
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N
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3.2.3  Partition Index(SC) 
It is the ratio of the sum of compactness and separation of the 

clusters. It is a sum of individual cluster validity measures 

normalized through division by the cardinality of each cluster 
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SC is useful when comparing different partitions having equal 

number of clusters. A lower value of SC indicates a better 

partition. 

3.2.4 Separation Index(S) 
On the contrary of partition index (SC), the separation index uses 

a minimum-distance separation for partition validity 
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3.2.5 Xie andBeni’s Index (XB)     
It aims to quantify the ratio of the total variation within clusters 

and the separation of clusters 
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The optimal cluster should mimimize the value of the index. 

3.2.6 Dunn’s Index (DI)     
This index is originally proposed to use at the identification of 

“compact and well separated clusters”. So the result of the 

clustering has to be recalculated as it is a hard partition algorithm.
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The main drawback of Dunn’s index is computational since 

calculating becomes computationally very expensive as c and N 

increase. 

3.2.7 Alternative Dunn’s Index (DI)     
The aim of modifying the original Dunn’s index was that the 

calculation becomes more simple, when the dissimilarity function 

between two clusters ))y,x(dcy,cx(min
ji ∈∈ is rated in 

value from beneath by the triangle-non equality: 

)v,x(d)v,y(d)y,x(d jj −≥
 

Where jv is the cluster centre of the j-th cluster. 
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Note that the only difference of SC, S and XB is the approach of 

the separation of clusters. In the case of overlapped clusters the 

values of DI and ADI are not really reliable because of re-

partitioning the results with the hard partition method. The above 

performance indexes are used to get optimum number of clusters 

for the following algorithms. 

3.3 Fuzzy C-means Clustering Algorithm 
Most analytical fuzzy clustering algorithms are based on 

optimization of the basic c-means objective function, or some 

modification of it. The advantage of fuzzy c-means algorithm is 

simplicity and easy implementation. Given the data set Z, choose 

the number of clusters by cluster validation as 1<c<N, the 

weighting exponent m > 1. The termination tolerance 0>ε  and 

the norm-inducing matrix A. Initialize the partition matrix 

randomly such that
fc

M∈
(0)

U . The following steps are 

repeated using MATLAB software for   i =1,2,…l, until the 

termination tolerance is achieved, then the values of membership 

functions [9] are obtained as given in (11). 

Step (1): Compute the cluster prototypes (means) 

  ci1,

)(

Z)(

V
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1k

m)1l(
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N

1k
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−
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Step (2): Compute the Euclidian distances 
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Step (3): Update the partition matrix 
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3.4 G-K Fuzzy Clustering Algorithm 
Gustafson and Kessel extended the standard fuzzy c-means 

algorithm by employing an adaptive distance norm, in order to 

detect clusters of different geometrical shapes in one data set [7]. 

Each cluster has its own norm-inducing matrix Ai. The matrices Ai 

are used as optimization variables in the  c-means functional, thus 

allowing each cluster to adapt the distance norm to the local 

topological structure of the data. Given the data set Z, choose the 

number of clusters by cluster validation as 1<c<N, the weighting 

exponent m > 1 and the termination tolerance 0>ε . Initialize the 

partition matrix randomly such that 
fc

M∈
(0)

U . The 

following steps are repeated using MATLAB software for 

l=1,2,…. ,.The G-K algorithm is same as that of fuzzy c-means, 

only the computation of distance measure is calculated using co-

variance matrices as follows: 

Co-variance matrix 

,
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      where ci1 ≤≤  

Euclidian distance 

[ ]*1

i
n/1

ii
T)l(

ikiikA
2

F)F((*)VZ(D
−

−= detρ

   ,)VZ(
)l(

ik − Nk1,ci1 ≤≤≤≤               (13) 

3.5 G-G Fuzzy Clustering Algorithm 
The fuzzy maximum likelihood estimates (FMLE) clustering 

algorithm employs a distance norm based on the fuzzy maximum 

likelihood estimates proposed by Bezdek and Dunn [9]. The 

Euclidian distance functions is chosen as 
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    Nk1,ci1 ≤≤≤≤                         (14) 

The priori probability of selecting cluster i is given by 
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Given the data set Z, choose the number of clusters by cluster 

validation as 1<c<N and the termination tolerance 0>ε . The 

following steps are repeated using MATLAB software for 

l=1,2,…. ,.The Gath - Geva algorithm is same as that of G-K, only 

the computation of distance norm involves an exponential term 

and thus decreases faster than the inner-product norm. The fuzzy 

covariance matrix of the ith cluster is given by 

,
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The difference between the matrix Fi  in GK algorithm and 

the
i

∑ define above is that the latter does not involve the 

weighting exponent m, instead of this it consists of w = 1. 

4. THE INVERTED PENDULUM 

PROBLEM 
Very often the quality of a control algorithm is tested and 

demonstrated on the inverted pendulum problem due to its 

inherent instability and dynamic characteristics. Figure 2 shows 

the free-bodied diagram of the inverted pendulum system. It is the 

problem of learning, how to balance an upright pole. Its solution 

consists of finding the horizontal force to be applied to the cart in 

order to balance the pole. The cart is moving on the track with no 

friction. Also, the pole is tied up to the cart by a frictionless hinge. 

Both the cart and the pole have only one degree of freedom, i.e. 

each of them can move in vertical plane only.  Lagrange equations 

can be used to derive dynamical system equations for a 

complicated mechanical system such as the inverted pendulum. 

The Lagrange equations use the kinetic and potential energy in the 

system to determine the dynamical equations of the inverted 

pendulum system. 

 

Fig. 2 Inverted pendulum 

where, 

θ    - Angle of the pole with respect to the   vertical axis 

θ&    -  Angular velocity of the pole with respect to the    

          vertical axis 

 F    -  Force applied to the cart 

 M   -  Mass of the cart 

 m   -  Mass of the pole 

x    -  Position of the cart 

x&    -  Velocity of the cart 

The kinetic energy of the system is the sum of the kinetic energies 

of each mass. The kinetic energy Ec of the cart is  

              

2

c
xM

2

1
E &=

                                                     (17) 

The pole can move in both the horizontal and vertical directions. 

So the pole kinetic energy is 

)
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2

1
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From the free bodied diagram x2 and z2 are equal to 
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The total kinetic energy, E of the system is equal to 

  pc EEE +=        (23) 

 Substitute Eq. (17),(18), (21)and (22) in (23) 
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The potential energy, V of the system is stored in the pendulum so 

  2
mgzV =        (25) 

Substitute equation (20) in (25) 

  )cosθ(mgLV =       (26) 

The Lagrangian function is                              
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The state-space variables of the system are x and θ , so the 

lagrange equations are 
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Solving equation (28)  and (29) the dynamic equations of the 

inverted pendulum is obtained  given  below 

21 xx =&
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Let the state variables 

θx1 = ; Angle of the pole with respect to the     vertical axis
 

θx2
&=

 
;  Angular velocity of the pole with respect to the 

vertical axis
 

xx3 =
 
;   Position of the cart 

xx4 &=
 
;   Velocity of the cart 

5. SIMULATION RESULTS 
To simulate the above equations, the mass of the cart, M is set to 

1.2 kg, mass of the pendulum is set to 0.1 kg, length of the 

pendulum is 0.4 meters, gravitational force, g is set to 9.81 m/s. 

The above state equations are simulated using SIMULINK 

software. It is observed that the angle of the inverted pendulum 

shown in Fig. 3 does not give us enough information on the 

inverted pendulum system. The pendulum falls over  quickly and  
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Fig. 3. Open loop response of the inverted pendulum 

it found to be unstable.  One of the requirements in system 

identification is the collection of ‘information rich’ input-output 

data. In order to adequately model the inverted pendulum it is 

necessary to stabilize it using a nonlinear feedback controller. 

5.1 Design of Nonlinear Feedback Controller  
Using a nonlinear feedback controller, the output data will contain 

more information for describing the process. The following 

equations are the control law developed for the inverted 

pendulum. 
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Equation (38) calculates the required force u, to keep the 

pendulum stable. For simulation, k1=25, k2=10, c1=1 and c2=2.6 

[10]. Also xd = 0 meters and 
d

θ = 0 rad, which are the desired 

position of the cart and angle of the pendulum, respectively. The 

inputs to this controller are the four output states of the non-liner 

pendulum model. The correct magnitude and force to keep the 

pendulum stable is calculated by the control law. The control law 

and closed loop model of the inverted pendulum developed by 

simulink. The closed loop response of the inverted pendulum with 

controller and force applied to the cart are shown in Fig.4 and 

Fig.5 respectively. 
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Fig. 4. Closed loop response of the inverted pendulum with  

                Controller. 
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Fig.5 Force applied to the cart 
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5.2 Generation of Input-Output Data with  

Nonlinear Controller  
Fig.6 shows that the control law is working properly. The data 

matrix Z was constructed from the identification data set as: 

T

200021

200021
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u,....u,u
Z 








=

θθθ
 

5.3 Simulation results for Cluster Validation  
Validity measures given in section 3.2 were used with Gustafson-

Kessel algorithm to validate the partitioning of the Inverted 

pendulum data with the current number of clusters. During the 

optimization parameters were fixed to the following values: m=2, 

1,001.0 ==∈ ρ  for each cluster, ]142[c∈ . The values of 

the validity measures depending from the number of cluster are 

plotted and embraced in table.1. 
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Fig.6 Values of Dunn’s Index and Alternative Dunn Index. 
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Fig. 7 Values of Partition coefficient and classification entropy. 
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Fig. 8 Values of Partition index, Separation Index and Xie and  

   Beni’s Index. 

 

Fig.9. Results showing number of clusters for Gustafson-Kessel 

algorithm applied to Inverted Pendulum. 

From Fig.8 SC and S hardly decreases at c=4 point. The xb index 

reaches this local minimum at c=4.  considering that SC and S are 

more useful, when comparing different clustering methods with 

the same c, we choose the optimal cluster to 4, which is confirmed 

by Dunn’s index and Alternative Dunn index in Fig.6. 

5.4 Simulation results implementing Fuzzy C-

means algorithm  
Initialization parameters of fuzzy c-means algorithm are given as: 

number of clusters c = 4, fuzziness of clustering m = 2, 

termination tolerance ε = 0.001. These parameters are fixed by 

trial and error. Using these initialization parameters, the fuzzy c-

means algorithm given in Section 3.3 is simulated. The modeling 

of inverted pendulum using fuzzy c-means algorithm is shown in   

Fig. 10. It does not exactly matching with actual process output. 



International Journal of Computer Applications (0975 – 8887) 

Volume 9– No.4, November 2010 

30 

0 500 1000 1500 2000
-0.015

-0.01

-0.005

0

0.005

0.01

Time (Samples)

A
n
g
le
 (
ra
d
)

 

 

Fuzzy c-means

Actual output

 

Fig.10 Simulated angle of fuzzy C-means and actual process 

output. 

5.5 Simulation results implementing G-K 

algorithm  
Initialization parameters of G-K algorithm are given as: number   

of clusters c=4, fuzziness of clustering m=2, termination tolerance 

ε = 0.001, expected cluster volumes ρ =1. These parameters are 

fixed by trial and error. Using these initialization parameters, the 

G-K algorithm given in Section 3.4 is simulated. The model of 

inverted pendulum using G-K algorithm is shown in Fig.11. It is 

evident from the response the model output is exactly matching 

with the process output.          

5.6 Simulation results implementing G-G 

algorithm  
Initialization parameters of Gath - Geva algorithm are given as: 

number of clusters c=4, fuzziness of clustering m=2, termination 

tolerance ε =0.001. Using these initialization parameters, the 

Gath-Geva  algorithm given in Section 3.5 is simulated. The 

modeling of inverted pendulum using Gath - Geva algorithm is 

shown in   Fig. 12. It does not exactly matching with actual 

process output. 
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Fig. 11. Simulated angle of G-K algorithm and actual process  

                output. 
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Fig.12 Simulated angle of Gath – Geva algorithm and actual                

process output. 

Table 1. The numerical values of validity measures. 

No. of 

Cluster 

 

2 

 

3 

 

4 

 

5 

 

6 

 

   7 

 

8 

 

9 

 

   10 

 

   11 

 

  12 

 

  13 

 

  14 

SC 0.802      0.279  0.150   0.118   0.1204     0.125 0.101    0.103    0.103 0.106    0.113   0.113    0.094 

PC 0.726    0.609    0.562  0.534    0.5115     0.486    0.472    0.462    0.469 0.453   0.442   0.429    0.440 

CE 0.425   0.681    0.824   0.922   1.0156     1.109   1.176  1.227    1.244 1.307    1.357     1.415    1.390 

XB 

 

50.71   19.00    7.229    7.843   7.201    10.201    10.181   9.565     5.512 6.790    5.824    4.509    6.905 
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5.7 Comparison of performance of fuzzy c-

means, G-K and G-G Algorithm 
The model outputs obtained using c-means, G-K and Gath – Geva 

algorithms are compared with actual output is shown in Fig.10, 

Fig 11 and Fig.12. From the result and performance table 2, it is 

observed that G-K algorithm gives better result by minimizing the 

Root Mean Square Error (RMSE). The performance index 

measured on the free-run test experiment is given by  

 

∑
=

−=
N

1k

2))k(y)k(y(
N

1 )
RMSE  

 

where, N represents the number of input-output data used for 

validating the model, y(k) is the actual output and )k(y
)

 is the 

model output.  

 

Table 2. Performance measure (RMSE) for a inverted 

pendulum. 

   

6. CONCLUSION 
The design and implementation of fuzzy model based on  fuzzy c-

means, g-k algorithm and Gath – Geva algorithms for the inverted 

pendulum are discussed in this paper. The effectiveness of G-K 

algorithm is verified through simulation studies and the results 

obtained are compared with that of actual process output. By 

means of product-space fuzzy c-means, G-K and Gath – Geva 

clustering, a data set generated by a inverted pendulum system can 

be partitioned into fuzzy subsets of data that are locally described 

by linear sub models are demonstrated in this paper. Also 

different cluster validation methods are discussed and presented to 

choose optimum number of cluster.  From the simulation results it 

is observed that the G-K clustering gives better performance for 

the inverted pendulum. Hence, it can be concluded that the 

proposed G-K algorithm can be applied to decompose any 

nonlinear system into local linear models and can be used to 

design model based control techniques such as Internal Model 

Control. 
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