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ABSTRACT  
We consider a service facility system with perishable 

inventory with finite number of servers. Each server having 

one perishable item for providing service. The arrival of a 

customer at the system according to independent Poisson 

Processes with rate   through a single channel. The 

service time of the customer is exponentially distributed 

with mean 
1/

 and the item in stock has exponential life 

time with perishability rate 
0)(>

. The free servers are 

occupied by the new customer, entering for service. The 

maximum level of item in stock is 
0>)(= cS

. The 

replenishment of inventory is instantaneous, when the 

inventory level comes to zero. Customers can be rejected 

from the system only when all the servers are busy that is, 

there is no waiting line. Transition probabilities are 

obtained from the two dimensional process. The problem is 

modeled as a Semi Markov decision process and we use 

the modified Value Iteration algorithm to obtain the 

minimum average loss rate.  

Key words: Service facility system, Perishable inventory, 

Semi Markov decision processes, Modified Value iteration, 

Data transformation. 

 

1  INTRODUCTION 
In most of the perishable inventory models, the inventory 

is depleted at a rate equal to the demand rate and perishable 

rate. But in service facility, we have a different situation 

when there are customers request for service. Thus the 

depletion of inventory depends on service rate and 

perishability rate. Examples of perishable inventory at 

service facilities include units of blood necessary for 

surgery, maintain the fruit stock in juice factory and 

maintain the milk stock in foot stalls which sell milk made 

products. 

Berman et. al(1993)considered an inventory management 

system with a service facility using one item of the 

inventory for each service. They assumed that both the 

demand and service times are deterministic and that queues 

can occur only during the stock-outs. They determined the 

optimal order quantity that minimizes the total expected 

cost rate. 

Berman and Kim(1999) analyzed a problem in a stochastic 

environment where the customers arrive at a service 

facility according to a Poisson Process. The service times 

are exponentially distributed with the mean inter-arrival 

time is assumed to be larger than the mean service time. 

The optimal policy in their paper is derived given that the 

order quantity is known. A logically related model has 

been studied by He et. al(1998), who analysed a Markovian 

inventory-production system. 

Berman and Sapna(2000) studied an inventory control 

problem at a service facility requiring one item of the 

inventory and assumed Poisson arrivals, arbitrarily 

distributed service times and zero lead times with a waiting 

room of finite capacity. Under a specified cost structure, 

the optimal ordering quantity that minimizes the long-run 

expected cost rate has been derived. 

Elango(2001) considered a Markovian inventory system at 

a service facility with service time having an exponential 

distribution with the parameter depending on the number 

of waiting customers and zero lead time. Arivarignan et. 

al(2002) extended this model to include an exponential 

lead time. Perumal and Arivarignan(2002) considered a 

Markovian inventory system with a waiting room of 

infinite capacity. Arivarignan and Sivakumar(2003) 

considered an inventory system with arbitrary distribution 

for inter-occurrence time of demands, exponential service 

time and exponential lead time.  

Eungab Kim(2005).[8] treat an inventory control problem 

in a facility that provides a single type of service for 

customers. Items used in service are supplied by an outside 

supplier. To incorporate lost sales due to service delay into 

the inventory control, they model a queuing system with 

finite waiting room and non-instantaneous replenishment 

process and examine the impact of finite buffer on 

replenishment policies. 

Maria E. Mayorga, Hyun-Soo Ahn(2006).[12] considered a 

multi class make-to-stock system served by a single server 

with adjustable capacity(service rate). At any point in time, 

the decision-maker must determine the capacity level, 

make a production decision(ie.,whether to produce an item 

to stock or to satisfy a back-order), and make a rationing 

decision(ie.,whether to satisfy a new order from stock or 

place it on back-order). They characterize the structure of 

optimal capacity adjustment, production, and stock rational 

policy for both finite and infinite-horizon problems. He 

find that the optimal policy is monotone in current 

inventory and backorder levels, and characterize its 

properties. 

In this article, the system has c  identical servers and each 

customer occupying one free server for service. The 

service facility system attached with perishable inventory 

and one item is utilised for each service. The replenishment 

of inventory is assumed to be instantaneous (ie., (0,S) 

Policy). The maximum level of inventory is 
0>)(= cS

. 

During the time of service, the depletion of the inventory is 

considered by perish and service completion of the 

customers. Decision is taken to accept the customer or 

reject the customer for service. Assume that there is no cost 

for acceptance of the customer and the cost will be 

incurred for rejection. 

This paper is organised as follows. Section 2, deals with 

the formulation of the problem. Section 3, which contains 

the analysis part of the problem forms the core part of the 

paper and we present some numerical results. Direction for 
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future research and suggestions are provided in the last 

section 4. 

2  PROBLEM FORMULATION 

Consider a Service facility system with perishable 

inventory which having c  identical servers. Due to 

perishability, we keep the maximum inventory level at 

0)>(= cS ( ie each server can utilize one item for 

service at a time). Customers arrive for service according 

to a Poisson Process with rate 0)(>  and the service time 

is exponentially distributed with mean 0)(>
1


. The item 

in stock has exponential life time with parameter 0)(> . 

Formulation with fictitious decision epochs 

In such a formulation, the vectors )),(),(( Ijiap
ij

  of one 

step transition probabilities have many non- zero entries. In 

our specific problem, this difficulty can be circumvented 

by including the service completion epochs and depletion 

epochs of perished item as fictitious decision epochs in 

addition to the real decision epochs, being the arrival epoch 

of customers. By doing so, a transition from any state is 

always to one of at most four neighboring states. In the 

approach with fictitious decision epochs, we take the state 
space: 

 0,1=;,;0,1,2,=,)/,,(= kciqciqkiqI  State 

),,( kiq  with k = 1 corresponds to the situation states that 

the customer entering point for service in the system. The 

auxiliary state ,0),( iq  corresponds to the situation in 

which the item is depleted by completion of service or 

perish of the item. Note that the customer arrival and the 
service completions are not relevant. 

For the states ),,( kiq  with k=1, the possible actions are 

denoted by,  










)1,,(1

)1,,(0

iqatcustomerarrivingtheaccept

iqatcustomerarrivingthereject
a

 

with the stipulation that 0=a  is only feasible decision, 

when ciq == . The fictitious decision of leaving the 

customers from the system and depletion of the item from 

inventory alone in the state ,0),(= iqs  is also denoted by 

0=a . 

Further the transition probabilities are extremely easy to 

specify, because of the fact that ),(
21

XXmin  is 

exponentially distributed with mean 

21

1

 

 and 

 
21

1
21 =<






XXP , when 

1
X  and 

2
X  are independent 

random variables having exponentially distributed with 

respective means 

1

1



 and 

2

1



. 

The total event rate is  

=),( iq









iqi

iqqi

>,)(
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3  VALUE ITERATION 

For the Semi Markov decision model the formulation of a 

value-iteration algorithm is not straight forward. However, 

by the data transformation method, we can convert the 

Semi-Markov decision model into a discrete -time Markov 

decision model such that both models have the same 

average cost for each stationary policy. In the discrete-time 

model it is no restriction to assume that all 

)(

)(
=)(

a

ac
ac

s

s

s


 

are positive. Otherwise add a sufficiently large positive 

constant to each )(ac
s

. 

Data Transformation method 

First chose a number   with 

)(<0
),(

amin
sas
  .where ),,(= kiqs . Consider now, 

the discrete time Markov decision model whose basic 
elements are given by, 

II = , and )(=)( sAsA  , Is . 

)(

)(
=)(

a
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s

s
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Regarding 

the choice of   in the algorithm, it is recommended to 

take )(=
),(

amin
sas
  when the embedded Markov chains 

 
n

X  in the Semi Markov model are aperiodic; otherwise 

)(
2

1
= amin

s


 is a reasonable choice. 

Then for action 0=a  in state ),,(= kiqs  
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For action 1=a  in state ,1),(= iqs  
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and 

)1,(

1
=(1)

iq
s




. 

Finally the one step expected costs )(ac
s

 are simply 

given by,  









,0,

0=,1),(=1,

=)( otherwise

aandiqs

ac
s

  

Now, having specified the basic elements of the Semi-

Markov decision model, we are in a position to formulate 

the value iteration algorithm for the computation of 

a(nearly) optimal acceptance rule. In the data 
transformation we take,  













iqi

iqqi

>,)(1/

,1/

= 



   

Using the above specifications, the value iteration scheme 

becomes quite simple for the allocation problem. Note that 

the expressions for the one-step transition times )(a
s
  

and the one-step transition probabilities )(ap
sv

 have 

common denomination and so the ratio )()/( aap
ssv
  

has a very simple form. In specifying the value iteration 

scheme, we distinguish between the auxiliary states 

,0),( iq  and the other states. 

Convergence of the bounds 

In value iteration for discrete time Markov decision 

problem, the lower and upper bounds 
n

m  and 
n

M  

converge to the same limit so that the algorithm will be 

stopped after finitely many iterations only, if a certain 

aperiodicity condition is satisfied. In general 
n

m  and 
n

M  

need not have the same limit, as the following example 

demonstrates. Consider the trivial Markov decision 

problem with two states 1 and 2 and a single action 
0

a  in 

each state. The one-step costs and the one-step transition 

probabilities are given by 

1=)(
01

ac , 0=)(
02

ac , 1=)(=)(
021012

apap  and 

0=)(=)(
022011

apap . Then the system cycles between 

the states 1 and 2. It is easily verified that 

kVkVV
kkk

=(1),=(2)=(1)
1222 

 and 1=(2)
12




kV
k

 

for all 1k . Hence 0=
n

m  and 1=
n

M  for all n, 

implying that the sequences 
n

m  and 
n

M  have different 

limits. The reason for the oscillating behavior of 

)()(
1

iViV
nn 

  is the periodicity of the Markov chain 

describing the state of the system. The next theorem gives 

sufficient conditions for the convergence of the value-

iteration algorithm. 

Theorem 

Suppose the weak unichain assumption holds and that for 

each average cost optimal stationary policy the associated 

Markov chain 
n

X  is aperiodic. Then there are finite 

constants 0>  and 1<<0   such that 

n

nn
mM  || , 1n . In particular, 

*== gmlimMlim
nnnn 

. For the proof of the 

theorem for the special case ofStrong aperiodicity 

assumption.[(i) for each stationary policy R the associated 

Markov chain 
n

X  has no two disjoint closed sets; (ii) 

0>)(ap
ii

 for all Ii  and )(iAa ] see Tijms (pp-270, 

2003). 

From the above result, 

)))((1
NnNnnn

mMmM


   where 






c
= .  

 it was shown that 1,  nmM
nn

 is non- increasing. 

Thus we find that  

)()(1
00

)/( mMmM Nn

nn
  , 1n .   implying 

the desired result. 

Value iteration algorithm 

Step:0 Choose )(
0

sV  such that 

 )()/()(0
0

aacminsV
ss
  for all s . choose a 

number   with  )(<0 amin
s
  . 

Step:1 In the states ,0),( iq  the only possible decision is 

to leave the system alone. Thus,  
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 when 0q  or 0i . 

Then the action a=1 for the states ,1),( iq  
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step:2 Compute the bounds when ,1),(= iqs   

  )()(=
1

sVsVminm
nnn 

  

 )()(=
1

sVsVmaxM
nnn 

   

 The algorithm is stopped when 

))((1
NnNnnn

mMmM


   Here 1=N . 

Then the algorithm stops after finitely many iterations,we 

can get the average lost rate *g . 

Numerical illustration is given below. 

We consider that the number of servers in the system is 

c=4. 

nn
mMy =  

))((1=
22 


nn

mMz   

/2=* yg  

4 ACKNOWLEDGEMENTS 

We have considered a service facility system with 

perishable inventory, as a Markov decision problem. Value 

iteration is the procedure used to get optimal average cost 

for loss rate of the customers. The complexity of the 

problem is more when the lead time of the item 

procurement is constant or exponentially distributed. To 

the best of our knowledge this MDP method is used first 

time to control the inventory in service facility( Berman, O. 

and Sapna, K. P. considered control of service rates). In 

future research investigations of MDP in service facility 

systems to compute the lose rate of the customer whenever 

the lead time of the item procurement is exponentially 
distributed. 
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at
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n
 

y Z *g  

1 6 10 1 49 1.5673 1.6503 1.6088 

2 5 9 1 53 1.2749 1.4240 1.3494 

3 5 10 1 57 1.2699 1.4540 1.3619 

4 6 10 2 59 1.3437 1.3581 1.3509 

5 4 8 1 63 1.0151 1.0483 1.0317 

6 4 9 1 65 1.0319 1.1054 1.0687 

7 5 10 2 76 0.7867 1.0151 0.9009 

8 4 8 2 85 0.4748 0.5109 0.4928 

9 4 10 2 94 0.5488 0.5663 0.5575 

10 4 9 2 104 0.3784 0.4252 0.4018 


