
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

8

Face Detection by Hybrid Genetic and Ant Colony
Optimization Algorithm

 S.Venkatesan M.E. Dr.S.Srinivasa Rao Madane Ph.D.,
 Ph.D., Research Scholar/CSE Principal & Professor

Anna University of Technology, Coimbatore, Priyadarshini College of Engineering,
 Coimbatore, India Vaniyambadi, India

ABSTRACT

Over the last Twenty years, several different techniques have

been proposed for computer recognition of human faces. The

localization of human faces in digital images is a fundamental

step in the process of face recognition. In this paper, a Hybrid

algorithm is proposed to detect faces using Ant Colony

Optimization and Genetic programming algorithms.

Evolutionary process of Ant Colony Optimization algorithm

adapts genetic operations to enhance ant movement towards

solution state. The algorithm converges to the optimal final

solution, by accumulating the most effective sub-solutions.

Keywords
Feature extraction, Genetic Programming, ACOG Algorithm,

Ant Colony Optimization .

1. INTRODUCTION
The ant colony optimization algorithm (ACO) is a probabilistic

technique for solving computational problems which can be

reduced to finding good paths through graphs. This algorithm is a

member of ant colony algorithms family, in swarm intelligence

methods, and it constitutes some metaheuristic optimizations. To

implement the algorithm it is necessary to get basic ideas of

swarm intelligence.

1.1 Operation of a Face Detection System
Most detection systems carry out the task by extracting certain

properties (e.g., local features or holistic intensity patterns) of a

set of test images acquired at a fixed pose obviously converting

into grayscale images (e.g., upright frontal pose) in an off-line

setting. To reduce the effects of illumination change, these

images are normalized and preprocessed to enhance[13] the

images by histogram equalization [9,10] or standardization (i.e.,

zero mean unit variance) [11]to compensate for the lighting

conditions and improve the contrast of the image.. Based on the

extracted properties, these systems typically scan through the

entire image at every possible location and scale in order to

locate faces. The extracted properties can be either manually

coded (with human knowledge) or learned from a set of data as

adopted in the recent systems that have demonstrated impressive

results [9, 10, 11]. In order to detect faces at different scale, the

detection process is usually repeated to a pyramid of images

whose resolution are reduced to 320 X 420 factor from the

original image [9, 10]. Such procedures may be expedited when

other visual cues can be accurately incorporated (e.g., color and

motion) as pre-processing steps to reduce the search space. As

faces are often detected across scale, the raw detected faces are

usually further processed to combine overlapped results and

remove false positives with heuristics (e.g., faces typically do not

overlap in images) [10] or further processing (e.g., edge

detection and intensity variance).

Numerous representations have been proposed for face detection,

including pixel-based [9, 10], parts-based [6, 4, 7], local edge

features [9], Haar wavelets [10] and Haar-like features [11, 10].

While earlier holistic representation schemes are able to detect

faces [9, 10], the recent systems with Haar-like features [11, 12]

have demonstrated impressive empirical results in detecting faces

under occlusion. A large and representative training set of face

images is essential for the success of learning-based face

detectors. From the set of collected data, more positive examples

can be synthetically generated by perturbing, mirroring, rotating

and scaling the original face images [9, 10]. On the other hand, it

is relatively easier to collect negative examples by randomly

sampling images without face images [9,10].

Fig 1. Block Diagram of Face Detection Using the Proposed

Method

1.2 Image Enhancement
The face images may be of poor contrast because of the
limitations of the lighting conditions. So histogram equalization is
used to compensate for the lighting conditions and improve the
contrast of the image. Let the of a digital face image consists of
the color bins in the range [0,C<=1] , where ri is the i-th color bin,
pi is the number of pixels in the image with that color bin and n is
the total number of pixels in the image. For any r in the interval
[0, 1], the cumulative sum of the bins provides with some scaling
constant. Histogram equalization is performed by transforming
the function s=T(r), which produces the mapping with the allowed
range of pixel values, i.e., a level s for every pixel value r in the
original image and 0 <= T (r) <= 1 for 0<= r <= 1.

Input Source

Image

Feature

Extraction

Image

Preprocessing

ACO Genetic

Algorithm

Output

Detected Face

Image

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

9

Fig. 2.Histogram Equalization of the Image

Fig 3.Intensity Histogram of Face

ACO belongs to the class of metaheuristics[3], which are

approximate algorithms used to obtain good enough solutions to

hard CO problems in a reasonable amount of computation time.

Other examples of metaheuristics are tab search simulated

annealing, and evolutionary computation. The inspiring source

of ACO is the foraging behavior of real ants. When searching for

food, ants initially explore the area surrounding their nest in a

random manner. As soon as an ant finds a food source, it

evaluates the quantity and the quality of the food and carries

some of it back to the nest. During the return trip, the ant

deposits a chemical pheromone trail on the ground. The quantity

of pheromone deposited, which may depend on the quantity and

quality of the food, will guide other ants to the food source.

Indirect communication between the ants via pheromone trails

enables them to find shortest paths between their nest and food

sources. This characteristic of real ant colonies is exploited in

artificial ant colonies in order to solve CO problems.

Real ant behavior is a great example of intelligent behavior. They

are not only capable of finding out the minimum distance from

their residing to any food source, but also of reacting in a proper

manner to accommodate the environmental changes like addition

of extra obstacle in path. For this they deposit a certain amount

of pheromone in path while walking. After some time the

shortest path becomes rich in pheromones, since ants going on

that path will make more rounds in less time than other ants.

Every time an ant comes out of its burrow, it chooses the path

richest in pheromone. Thus after some time all the ants start

walking on this path and other path get faded since pheromone

decays with time.

Fig 2. Scenario example

Ant Colony Metaheuristic in AI Robotics is based on this

behavior. We take any one path and assume it to be optimum,

and if we get any path having better optimization then we replace

this path with that one. Finally we get an optimum

approximation. central component of an ACO algorithm is a

parametrized probabilistic model, which is called the pheromone

model. The pheromone model consists of a vector of model

parameters T called pheromone trail parameters. The pheromone

trail parameters, which are usually associated to components of

solutions, have values_i, called pheromone values. Figure 3

shows the chance of moving an ant to other of the surrounding

cells.

Fig.4. Chance for moving to adjacent cells

 The pheromone model is used to probabilistically generate

solutions to the problem under consideration by assembling them

from a finite set of solution components. At runtime, ACO

algorithms update the pheromone values using previously

generated solutions. The update aims to concentrate the search in

regions of the search space containing high quality solutions. In

particular, the reinforcement of solution components depending

on the solution quality is an important ingredient of ACO

algorithms. It implicitly assumes that good solutions consist of

good solution components. 4 To learn which components

contribute to good solutions can help assembling them into better

solutions. In general, the ACO approach attempts to solve an

optimization problem by repeating the following two steps:

candidate solutions are constructed using a pheromone model,

that is, a parameterized probability distribution over the solution

space. The candidate solutions are used to modify the pheromone

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

10

values in a way that is deemed to bias future sampling toward

high quality solutions.

2. BACKGROUND AND RELATED

WORK
Genetic Algorithms (GA) have been used to evolve computer

programs for specific tasks, and to design other computational

structures. The recent resurgence of interest in AP with GA has

been spurred by the work on Genetic Programming (GP). GP

paradigm provides a way to do program induction by searching

the space of possible computer programs for an individual

computer program that is highly fit in solving or approximately

solving the problem at hand. The genetic programming paradigm

permits the evolution of computer programs which can perform

alternative computations conditioned on the outcome of

intermediate calculations, which can perform computations on

variables of many different types, which can perform iterations

and recursions to achieve the desired result, which can define and

subsequently use computed values and subprograms, and whose

size, shape, and complexity is not specified in advance.

GP use relatively low-level primitives, which are defined

separately rather than combined a priori into high-level

primitives, since such mechanism generate hierarchical structures

that would facilitate the creation of new high-level primitives

from built-in low-level primitives. Unfortunately, since every

real life problem are dynamic problem, thus their behaviors are

much complex, GP suffers from serious weaknesses random

systems. Chaos is important, in part, because it helps us to cope

with unstable system by improving our ability to describe, to

understand, perhaps even to forecast them. Ant Colony

Optimization (ACO) is the result of research on computational

intelligence approaches to combinatorial optimization originally

conducted by Dr. Marco Dorigo[1][2], in collaboration with

Alberto Colorni and Vittorio Maniezzo. The fundamental

approach underlying ACO is an iterative process in which a

population of simple agents repeatedly construct candidate

solutions; this construction process is probabilistically guided by

heuristic information on the given problem instance as well as by

a shared memory containing experience gathered by the ants in

previous iteration. ACO has been applied to a broad range of

hard combinatorial problems. Problems are defined in terms of

components and states, which are sequences of components. Ant

Colony Optimization incrementally generates solutions paths in

the space of such components, adding new components to a state.

Memory is kept of all the observed transitions between pairs of

solution components and a degree of desirability is associated to

each transition depending on the quality of the solutions in which

it occurred so far. While a new solution is generated, a

component y is included in a state, with a probability that is

proportional to the desirability of the transition between the last

component included in the state, and y itself. The main idea is to

use the self-organizing principles to coordinate populations of

artificial agents that collaborate to solve computational problems.

Self-organization is a set of dynamical mechanisms whereby

structures appear at the global level of a system from interactions

among its lower-level components. The rules specifying the

interactions among the system’s constituent units are executed on

the basis of purely local information, without reference to the

global pattern, which is an emergent property of the system

rather than a property imposed upon the system by an external

ordering influence. For example, the emerging structures in the

case of foraging in ants include spatiotemporally organized

networks of pheromone trails. The aim of this work is to enhance

the ability of ACO by using GP technique.

3. GENETIC PROGRAMMING
Some specific advantages of genetic programming are that no

analytical knowledge is needed and still could get accurate

results. GP approach does scale with the problem size. GP does

impose restrictions on how the structure of solutions should be

formulated. There are several variants of GP, some of them are:

Linear Genetic Programming (LGP), Gene Expression

Programming (GEP), Multi Expression Programming (MEP),

Cartesian Genetic Programming (CGP), Traceless Genetic

Programming (TGP) and Genetic Algorithm for Deriving

Software (GADS). Cartesian Genetic Programming was

originally developed by Miller and Thomson for the purpose of

evolving digital circuits and represents a program as a directed

graph. One of the benefits of this type of representation is the

implicit re-use of nodes in the directed graph. Originally CGP

used a program topology defined by a rectangular grid of nodes

with a user defined number of rows and columns. In CGP, the

genotype is a fixed-length representation and consists of a list of

integers which encode the function and connections of each node

in the directed graph. The genotype is then mapped to an indexed

graph that can be executed as a program. In CGP there are very

large numbers of genotypes that map to identical genotypes due

to the presence of a large amount of redundancy. Firstly there is

node redundancy that is caused by genes associated with nodes

that are not part of the connected graph representing the program.

Another form of redundancy in CGP, also present in all other

forms of GP is, functional redundancy. Simon Harding and Ltd

introduce computational development using a form of Cartesian

Genetic Programming that includes self-modification operations.

The interesting characteristic of CGP is:

1. More powerful program encoding using graphs, than using

conventional GP tree-like representations, the population of

strings are of fixed length, whereas their corresponding graphs

are of variable length depending on the number of genes in use.

2, Efficient evaluation derived from the intrinsic feature of sub

graph-reuse exhibited by graphs.

3. Less complicated graph recombination via the crossover and

mutation genetic operators.

4. FEATURE EXTRACTION
Roughly speaking, background, object, edges, pixel intensity and

noises are what constitute an image. Face detection by genetic

algorithm is in essence to classify the different contents into

different classes. Where, features are primary elements, which

must be representative and comprehensive. Feature extraction,

which influences not only the representation of image

information but also the accuracy and efficiency of the

subsequent algorithm, is significant in face detection. By

analyzing the image, a feature extraction method is proposed.

4.1 Proposed ACO Genetic Algorithm

(ACOG)
A combinatorial optimization problem is a problem defined over

a set C = c1....cn of basic components. A subset S of components

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

11

represents a solution of the problem; F ⊆ 2c is the subset of

feasible solutions, thus a solution S is feasible if and only if S ∈

F. A cost function z is defined over the solution domain, z : 2C---

- R, the objective being to find a minimum cost feasible

solution S*, i.e., to find S*: S* ∈ F and z(S*) ≤ z(S), ∀S∈F.

They move by applying a stochastic local decision policy based

on two parameters, called trails and attractiveness.

By moving, each ant incrementally constructs a solution to the

problem. The ACO [14] system contains two rules:

1. Local pheromone update rule, which applied whilst

constructing solutions. 2. Global pheromone updating rule,

which applied after all ants construct a solution. Furthermore, an

ACO algorithm includes two more mechanisms: trail evaporation

and, optionally, daemon actions. Trail evaporation decreases all

trail values over time, in order to avoid unlimited accumulation

of trails over some component. Daemon actions can be used to

implement centralized actions which cannot be performed by

single ants, such as the invocation of a local optimization

procedure, or the update of global information to be used to

decide whether to bias the search process from a non-local

perspective. At each step, each ant computes a set of feasible

expansions to its current state, and moves to one of these in

probability. The probability distribution is specified as follows.

For ant k, the probability of moving from state t to state n

depends on the combination of two values: the attractiveness of

the move, as computed by some heuristic indicating the priori

desirability of that move; the trail level of the move, indicating

how proficient it has been in the past to make that particular

move: it represents therefore an a posteriori indication of the

desirability of that move.

5. ACOG ALGORITHM
An ACOG is differing from previous algorithm. It uses genetic

programming to enhance performance. It consists of two main

sections: initialization and a main loop, where Genetic

Programming is used in the second sections. The main loop runs

for a user defined number of iterations. These are described

below:

1. Initialization:

 Set initial parameters that are system: variable, states, function,

input, output, input trajectory, output trajectory. Set initial

pheromone trails value. Each ant is individually placed on initial

state with empty memory.

2. While termination conditions not meet

 do

 Construct Ant Solution:

Each ant constructs a path by successively applying the transition

function the probability of moving from state to state depend on

as the attractiveness of the move, and the trail level of the move.

 Apply Local Search

Best Tour check: If there is an improvement, update it.

 Update Trails:

A. Evaporate a fixed proportion of the pheromone on each road.

B. For each ant perform the ―ant-cycle‖ pheromone update.

Reinforce the best tour with a set number of ―elitist ants‖

performing the ―ant-cycle‖

Table 1 Parameter settings [12]

Chromosome Length 32 bits

Population Size 150

Number of Generation 300

Cross over probability 0.7

Mutation Probability 0.01

Initial Population: Generate randomly a new population of

chromosomes of size N: x1, x2,…..xn..Assign the cross over

probability PC and the mutation Probability PM.

Evaluate the Fitness function for each chromosome in the

population.

Fitness Function: To determine where a selected region is a face

or not a function need to assign a degree of fitness to each

chromosome in every generation. The fitness of a chromosome is

defined as the function of the difference between the intensity

value of the input image and that of the template image measured

for the expected location of the chromosome. That is for each

chromosome n, fitness function is defined as [12]

where Bmax is the maximum brightness of the image, xSize and

ySize are the number of pixels in the horizontal and vertical

directions of the image, W is the window, f and f n ,t are the

intensity values of the original image and the template image

when it is justified for the n-th position of the chromosome,

respectively.

Selection: Select a pair of chromosomes for mating use the

roulette wheel selection procedure, where each chromosome is

given a slice of a circular roulette wheel. The area of the slice

within the wheel is equal to the chromosome fitness ration

obviously the highly fit chromosomes occupy the largest areas,

where the chromosomes with least fit have much smaller

segments in the wheel. To select chromosome for mating a

random number is generated in the interval [0.100], and the

chromosome whose segment spans the random number is

selected.

Cross over: Produce two offspring from two parent

chromosomes. Cross over operator chooses a crossover point

where two parent chromosomes break and then exchanges the

chromosomes parts after that point. As a result two offspring are

generated by combining the partial features of two chromosomes.

If a pair of chromosomes does not takes place, and the offspring

are created as exact copies of each point. This research employs

single point cross over, two point cross over and uniform cross

over operators. The crossover points are selected randomly

within the chromosome for exchanging the contents.

Mutation: Apply the conventional mutation operation to the

population with a mutation rate PM. For each chromosome

generate a random value between [0,1].If the random value is

less than P M choose a bit at a random location to flip its value

from 0 to 1 or 1 to 0. The parameter setting approach is shown in

Table 1.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

12

By applying the above operation, based on pheromone trails. The

operations are applied to individual(s) selected from the

population with a probability based on fitness.

End While

The Performance of Genetic Process:

Genetic generation process involves probabilistic steps, because

of these probabilistic steps, non convergence and premature

convergence, i.e. convergence to a globally sub-optimal result,

problems become inherent features of genetic generation process.

To minimize the effect of these problems, multiple independent

runs of a problem must be made. Best-of-run individual from a ll

such multiple independent runs can then be designated as the

result of the group of runs. If every run of GPG were successful

in yielding a solution, the computational effort required to get the

solution would depends primarily on four factors: population

size, M, number of generation that are run, g, (g must be less

than or equal to the maximum number of generation G) the

amount of processing required for fitness measure over all fitness

cases, and the amount of processing required for test phase e, we

assume that the processing time to measure the fitness of an

individual is its run time, P. If success occurs on the same

generation of every run, then the computational effort E would

be computed as follows:

E= (M • g • β • e)

Since the value of e is too small with respect to other factors, we

shall not consider it. However, in most cases, success occurs on

different generations in different runs, then the computational

effort E would be computed as follows:

 E= (M• g avr • β)

Where gavr is the average number of executed generations Since

GPG is a probabilistic algorithm, not all runs are successful at

yielding a solution to the problem by generation G. Thus, the

computational effort is computed in this way, first determining

the number of independent runs R needed to yield a success with

a certain probability. Second, multiply R by the amount of

Processing required for each run, that is. The number of

independent runs R required to satisfy the success predicate by

generation i with a probability z which depends on both z and P

(M, i), where z is the probability of satisfying the success

predicate by generation i at least once in R runs defined by:

z = 1 - [1- P (M, i)] R

P (M,i) is the cumulative probability of success for all the

generations between generation 0 and generation i. P (M, i) is

computed after experimentally obtaining an estimate for the

instantaneous probability Y (M, i) that a particular run with a

population size M yields, for the first time, on a specified

generation i, an individual is satisfying the success predicate for

the problem]. This experimental measurement of Y (M, i) usually

requires a substantial number of runs. The computational effort

E, is the minimal value of the total number of individuals that

must be processed to yield a solution for the problem with z

probability (ex: z = 99%):

E= M • (•g + 1) • β • R

 Where •g is the first generation at which minimum number of

individual evaluation is produced, it is called best generation. •g

value is incremented by one since generation •g must also run to

reach the solution. From the above equation computational effort

depends on the particular choices of values for M, G, P (M, i),

and the effort required for fitness evaluation, hence, the value of

E is not necessarily the minimum computational effort possible

for the problem.

6. EXPERIMENTAL RESULTS

6.1 A Speed of the detector
The AdaBoost-based face detector demonstrated that faces can

be fairly reliably detected in real-time (i.e., more than 15 frames

per second on 320 by 240 images with desktop computers) under

partial occlusion. While Haar wavelets were used for

representing faces and pedestrians, they proposed the use of

Haar-like features which can be computed efficiently with

integral image. Despite the excellent run-time performance of

boosted cascade classifier, the training time of such a system is

rather lengthy. In addition, the classifier cascade is an example of

degenerate decision tree with an unbalanced data set. Numerous

algorithms have been proposed to address these issues and

extended to detect faces in multiple views.

There are numerous metrics to gauge the performance of face

detection systems, ranging from detection frame rate, false

positive /negative rate, number of classifier, number of features,

number of training images, training time, accuracy and memory

requirements. In addition, the reported performance also depends

on the definition of a ―correct‖ detection result. Several post-

processing algorithms have been proposed to better locate faces

and extract facial features.

This method particularly well adapted to real time applications.

In fact, the computed model needs few operations to be applied

on an image. Previous works show that the elapsed time for face

detection is about 50 seconds. In our approach we try to reduce

this to a greater extent and also to increase the true positive rate

than Haar wavelet based method adaboost training method.

6.2 Statistical Results
The proposed ACOG algorithm detects the set of test images of

size 320 x 240 resolution in Intel Dual Core processor of 2.8

GHz PC using MATLAB 7.9 at an average speed of 5.2 secs.

The proposed algorithm excels at 8 out of 10 test images better

than the Adaboost, and aar Wavelet based Training Figure 4

shows the graphical comparison of detection algorithms plotting

test images in x axis and run time in seconds in y axis.

Fig. 5 Test Images vs Run Time

7. CONCLUSION
The effectiveness of the Face detection algorithm has been tested

both in simple and complex background for different types of

face and non face images of size 320X420 resolution. This

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

13

algorithm is capable of detecting the faces in the images with

different backgrounds. A rotated human face can also be detected

even if the face is under shadow, wearing glasses, or under bad

lighting conditions. The performance of the proposed algorithm

is up to the expectation and results are experimented with several

test images and found to detect faces statistically best than the

existing face detecting algorithms.

8. REFERENCES
[1] M. Dorigo,V. Maniezzo, A. Colorni, Ant system:

optimization by a colony of cooperating agents, IEEE

Trans. Systems, Man, Cybernet.-Part B 26 (1) 29–41.

[2] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT

Press, Cambridge, MA, 2004.

 [3] C. Gagné,W.L. Price, M. Gravel, Comparing an ACO

algorithm with other heuristics for the single machine

scheduling problem with sequence-dependent setup times,J.
Oper. Res. Soc. 53 (2002) 895–906.

[4] L.M. Gambardella, M. Dorigo, Ant colony system

hybridized with a new local search for the sequential

ordering problem, INFORMS J. Comput. 12 (3) (2000)
237–255.

[5] F. Glover, Tabu search—Part I, ORSAJ. Compute. 1 (3)

(1989) 190–206. [31] F. Glover, Tabu search—Part II,
ORSAJ. Comput. 2 (1) (1990) 4–32.

[6] F. Glover, G. Kochenberger (Eds.), Handbook of

Metaheuristics, Kluwer Academic Publishers, Norwell, MA,
2002.

[7] M. Guntsch, M. Middendorf, Pheromone modification

strategies for ant algorithms applied to dynamic TSP, in:

E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S.

Cagnoni, E. Hart, G.R. Raidl, H. Tijink (Eds.), Applications

of Evolutionary Computing: Proc. EvoWorkshops 2001,

Lecture Notes in Computer Science, Vol. 2037, Springer,
Berlin, Germany, , pp. 213–222.

[8] W.J. Gutjahr, A generalized convergence result for the

graph-based ant system metaheuristic, Tech. Report 99-09,

Department of Statistics and Decision Support Systems,
University of Vienna, Austria.

[9] Sung, K.K., Poggio, T.: Example-based learning for view-

based human face detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20(1) (1998) 39–51.

[10] Rowley, H., Baluja, S., Kanade, T.: Neural network-based

face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20(1) (1998) 23–38.

[11] Viola, P., Jones, M.: Robust real-time face detection.

International Journal of Computer Vision 57(2) (2004) 137–
154.

[12] Md.Golam Moazzam and Md. Al-Amin Bhuiyan:A Novel

Approach for Human Face Detection Using Genetic

Algorithm

[13] S.Venkatesan and M.Karnan:Advvnced Classification using

Genetic Algorithm and Image Segmnetation For Improved

Face Detection.,computer research and Developemnt 2010

second InternationalConference(ICCRD)7-10 May2010 on

Page364-368

[14] S.Venkatesan and M.Karnan: Edge and Characteristics

Subset Selection in images using ACO ,Computer research

and Developemnt 2010 Second International Conference
(ICCRD)7-10 May 2010 on Page 369-372

9. AUTHORS
Dr.S.Srinivasa Rao Madane Principal and Professor Department

of Computer Science & Engineering in Priyadarshini

Engineering Vaniyambadi Tamilnadu India.His Area of

Interest includes Neural Networks, Image processing, Analog

and Digital communication

S.Venkatesan Pursuing Ph.D., in Department of Computer

Science and Engineering in Anna University of Technology

Coimbatore, Tamilnadu India. His area of interest includes

Image Processing, Soft Computing, Pattern Recognition, and

Optimization Techniques.

http://ijcaonline.org/

