
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

1

An Approach for Intranet Data Security

Prof. Samir Kumar Bandyopadhyay
Dept. of Computer Sc. & Engg, University of Calcutta

92 A.P.C. Road, Kolkata – 700009, India

Suman Chakraborty
B.P. Poddar Institute of Management and Technology

137, V.I.P. Road, Kolkata – 700052, India

ABSTRACT

In this paper, combined the encrypting and compressing processes

to consider the choices of which types of bits are most effective in

the selective encryption sense when they are changed. So, instead

of encrypting the whole file bit by bit, changed only these highly

sensitive bits. Moreover, by combining the compression and

encryption tasks and reducing the total encryption work required,

it will helps to achieve a savings in system complexity. Selective

encryption is the technique of encrypting some parts of a

compressed data file while leaving others unencrypted. Selective

encryption is not a new idea. It has been proposed in several

applications, especially in the commercial multimedia industry.

Hover, selective encryption of lossless compressed text files has

not been explored, and that is the focus of this paper.

Keywords

Codeword, encryption, compression, alphabet, security,

frequency, Huffman coding

1. INTRODUCTION
Security has long been seen as a major sticking point in the

adoption of Internet technology in the enterprise. As networks

have grown and connected to the Internet, the spectre of the

hacker has haunted managers responsible for both delivering

information within the enterprise and to its partners, and

protecting it from unauthorised outsiders.

In fact, the security capabilities of the latest Internet and intranet

technologies enable companies to control the availability of

information and the authenticity of that information better than

ever before. The increasing sophistication of both server and

client software means that this unprecedented level of security can

be provided without requiring users to undergo complex and

bureaucratic procedures to gain legitimate access to sites.

Firewalls also offer some protection to users venturing out from

the network to the Internet, acting as proxies to fetch web pages

so that the name and IP number of machines on the network are

not revealed to web sites that they visit-preventing hackers from

learning details of the structure of the network.

While the basic firewall remains a fundamental of Internet and

intranet security, increasing levels of sophistication are required

by many users as access to the corporate intranet needs to be

widened beyond those physically present on the same network.

Allowing users dial-up access behind the firewall violates basic

security principles; restricting them to the same access offered to

the rest of the Internet in front of the firewall denies them valuable

services[1,2].

A potential weakness of VPN solutions is their relative

inflexibility. VPNs work well for creating fixed tunnels from one

known point to another, but they are less well suited to situations

where access needs to be given on-the-fly to groups of people not

necessarily known at the outset, or who need to gain access from a

variety of locations. VPN technology at present works best for

encrypting traffic between two known points that are accepted as

valid destinations for traffic: once a link has been established, the

technology is used to encrypt the information which is sent, not

for establishing the validity of the destination to which it is being

sent.

As more flexible VPN access is required, the prime issue becomes

that of authenticating potential visitors to the site and the

credentials that they present. Are they who they say they are, or an

impostor? With this capability it is possible to open up the system

to provide access to a wider range of partners, customers or

suppliers.

The use of public-key based security systems requires

considerable care in system design and management. The security

of the entire system is ultimately guaranteed by the security of the

key used for signing certificates at the top (commonly called the

root) of the public key infrastructure. Here specialized hardware

can play a useful role.

Normally, all keys that are accessed by the server are held at some

point in the main memory of the server, where they are potentially

vulnerable to attack (for example, in a server core dump). A

higher degree of protection is desirable for the most valuable

keys.

A specialized hardware cryptographic module for storing and

protecting the signing keys provides an answer. The keys are

stored in a strongly encrypted format. When loaded for signing,

the keys are decrypted and loaded into the memory of the secure

cryptographic module, which then performs all the signing

operations on behalf of the server. The keys are never revealed in

their unencrypted form to the server, so even if an intruder

manages to access the network, the keys will remain safe. Security

is further assisted by physical design features of the module;

tamper-resistant enclosures and advanced manufacturing

techniques protect the keys from physical attack.

The signing of digital certificates is also a computation-intensive

process, so it makes sense to consider combining some kind of

hardware acceleration of cryptography within the key storage

module. This way, keys are rapidly handled within a secure

environment and no processing bottleneck is introduced, even

when a high transaction throughput is required.

Selective encryption is the method of encrypting some parts of a

compressed data file while leaving others unencrypted. Selective

encryption is not a new idea. It has been proposed in various

applications, especially in the commercial multimedia industry.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

2

Hover, selective encryption of lossless compressed text files has

not been explored, and that is the focus of this paper [3].

2. REVIEW WORKS
Huffman coding algorithm was introduced by David Huffman in

1952 and has been widely applied for data compression. The

algorithm narrows the alphabet for the file based on the pattern of

that particular data file and assigns the code for each character of

the alphabet depending on the frequency of occurrence of that

character. It assigns shorter code to the frequently used characters

and longer code to the less-frequently used ones. Huffman coding

therefore reduces the number of bits used for each high-frequency

character while may increase this number for low-frequency

character. These assignments results in the compression of the file

to about 20 to 40%. Huffman coding therefore is fix-to-variable

compression scheme.

As security is an increasing public concern these days, encryption

is becoming popular for any type of sensitive information. An

effective encryption scheme that saves the cost and time for data

encrypting will be the need of the government, organizations,

business companies or individuals. Selective encryption therefore

has been proposed for this purpose.

Selective encryption suggests the technique that selectively

encrypts just some parts of the compressed file while guaranteeing

the security of the original data file. Our strategy for selective

encryption here will nest the encrypting process into the encoding

process while compressing a data file. With this arrangement, we

are not only saving the time for encrypting the file, but also the

cost of system complexity. The following figures explain the

concept of selective encryption.

The Data Encryption Standard (DES) algorithm was adopted by

the U.S. government in July 1977. It was reaffirmed in 1983,

1988, and 1993. DES is a block cipher that transforms 64-bit data

blocks under a 56-bit secret key, by means of permutation and

substitution. It is officially described in FIPS PUB 46.

DES is a "symmetrical" encryption algorithm: same key that is

used for encryption is used to decrypt the message.

The DES algorithm is still widely used and is considered

reasonably secure. There is no feasible way to break DES as is

using a 64-bit (8 characters) block cipher. There are

70,000,000,000,000,000 (seventy quadrillion) possible keys of 56

bits. However, due to the advance in the computational power of

super- computers, an exhaustive search of 2^55 steps on

average, can retrieve the key used in the encryption (if the key is

changed frequently, the risk of this event is greatly diminished).

3. PROGRAMS FOR ENCRYPTION AND

DECRYPTION
The program for Encryption and Decryption are presented below:

/* Program for Encryption */

#include<stdio.h>

#include<conio.h>

#define ISSET(a,b) a & pow(2,b) ? 1 : 0

char plain[8];

char cipher[8];

char key[8];

void pbox(char *, int, int *);

void sbox(char *);

void breakplain(char *, char *,char *);

void copytoleft(char *,char *);

void copytoright(char *,char *);

void findkey(char *,int);

void xor(char *,char *);

void display(char *);

void encrypt(void);

main()

{

 FILE *src,*dest,*skey;

 int n,i;

 clrscr();

 skey=fopen("d:/server/rsa_serv/skey.txt","r");

 fscanf(skey,"%s",&key[8]);

 fclose(skey);

 src=fopen("d:/server/zip1.txt","rb");

 dest=fopen("d:/server/encrypt1.txt","wb");

 while(1)

 {

 n=fread(plain,sizeof(char),8,src);

 if(n<8)

 for(i=n;i<8;i++)

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

3

 plain[i]='\0';

 encrypt();

 fwrite(plain,sizeof(char),8,dest);

 getch();

 if(n<8)

 break;

 }

 fcloseall();

 getch();

 return 0;

}

void encrypt(void)

{

 int lkey[] = {1,5,4,2,6,7,0,3};

 int rlkey[] = {6,0,3,7,2,1,4,5};

 int skey[] = {1,3,0,2};

 char tempkey[4],left[4],right[4];

 int i;

 /* 1st Step */

 pbox(plain,8,lkey);

 /* 2nd to 17th Step*/

 for(i=0;i<16;i++)

 {

 breakplain(left,right,plain);

 copytoleft(plain,right);

 findkey(tempkey,i);

 xor(right,tempkey);

 sbox(right);

 pbox(right,4,skey);

 xor(right,left);

 copytoright(plain,right);

 }

 /* 18th Step*/

 breakplain(left,right,plain);

 copytoleft(plain, right);

 copytoright(plain,left);

 /* 19th step*/

 pbox(plain,8,rlkey);

}

void pbox(char *arr, int n, int *key)

{

 int i;

` char *dest=(char*)malloc(n*sizeof(char));

 for(i = 0; i < n; i++)

 dest[key[i]] = arr[i];

 for(i=0; i < n; i++)

 arr[i] = dest[i]; return;

}

void sbox(char *arr)

{

 int i;

 for(i = 0; i < 4; i++)

 arr[i] = ~arr[i];

 return;

}

void breakplain(char *left, char *right, char *plain)

{

int i;

for(i=0;i<4;i++)

right[i] = plain[i];

for(i=4;i<8;i++)

left[i-4] = plain[i];

return;

}

void copytoleft(char *dest, char *src)

{

int i;

for(i = 3; i >= 0; i--)

dest[i+4] = src[i];

return;

}

void copytoright(char *dest, char *src)

{

int i;

for(i = 0; i < 4; i++)

dest[i] = src[i];

return;

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

4

}

int pow(int a,int b)

{

int i,temp = 1;

for(i = 1; i <= b; i++)

temp *= a;

return (temp);

}

void findkey(char *tkey, int n)

{

int combine[] ={60,27,43,23,54,75,90,39,92

,46,102,30,105,71,120,15 };

int keyrule[] = { 2,0,3,1};

int i,count;

for(i=0,count = 0; i < 7 && count < 4; i++)

if(ISSET(combine[n],i))

 tkey[count++] = key[i];

pbox(tkey,4,keyrule);

return;

}

void xor(char *dest, char *src)

{

int i;

for(i = 0;i< 4;i++)

dest[i] ^= src[i];

return;

}

After the socket operations of two machines, the compressed,

encrypted file (encrypt1.txt) has to be decrypted in the client

machine. To do this, we use the DES decryption algorithm .This

is just the reverse of the encryption algorithm. The output of the

module is the compressed file.

The same algorithm can be used for encryption or decryption. In

order to decrypt the cipher text and get the original text again, the

procedure is simply repeated but the sub keys are applied in

reverse order, from K16-K1. Other than that, decryption is

performed exactly the same as encryption.

4. PROGRAM FOR DECRYPTION
/* Program for Decryption */

#include<stdio.h>

#include<conio.h>

#define ISSET(a,b) (a & pow(2,b)) ? 1 : 0

char plain[8], key[8];

void pbox(char *,int,int *);void sbox(char *);

void breakplain(char *, char *,char *);

void copytoleft(char *,char *);void copytoright(char *,char *);

void findkey(char *n,int);

void xor(char *,char *);void display(char *);void decrypt(void);

main()

{

FILE *src,*dest,*skey;

int n;

clrscr();

skey=fopen("c:/client/rsa_clit/skey.txt","r");

fscanf(skey,"%s",&key[8]);

fclose(skey);

src=fopen("c:/client/encrypt1.txt","rb");

dest=fopen("c:/client/zip2.txt","wb");

while(1)

{

fread(plain,sizeof(char),8,src);

if(feof(src))

break;

decrypt();

fwrite(plain,sizeof(char),8,dest);

}

fcloseall();

return 0;

}

void decrypt(void)

{

int lkey[] = {1,5,4,2,6,7,0,3};

int rlkey[] = {6,0,3,7,2,1,4,5};

int skey[] = {1,3,0,2};

char tempkey[4];

char left[4],right[4];

int i,j;

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

5

/* 1st Stage */

pbox(plain,8,lkey);

/* 2nd Stage */

breakplain(left,right,plain);

copytoleft(plain,right);

copytoright(plain,left);

/* 3rd stage to 18th Stage*/

for(i=0;i<16;i++)

{

breakplain(left,right,plain);

copytoright(plain,left);

 findkey(tempkey,15-i);

xor(left,tempkey);

sbox(left);

pbox(left,4,skey);

xor(left,right);

 copytoleft(plain,left);

}

/* 19th stage*/

pbox(plain,8,rlkey);

return;

}

void pbox(char *arr, int n, int *key)

{

int i;

char *dest=(char*)malloc(n*sizeof(char));

for(i = 0; i < n; i++)

dest[key[i]] = arr[i];

for(i=0; i < n; i++)

arr[i] = dest[i];

return;

}

void sbox(char *arr)

{

int i;

for(i = 0; i < 4; i++)

arr[i] = ~arr[i];

return;

}

void breakplain(char left, char *right, char *plain)

{

int i;

for(i=0;i<4;i++)

right[i] = plain[i];

for(;i<8;i++)

left[i-4] = plain[i];

return;

}

void copytoleft(char *dest, char *src)

{

int i;

for(i = 3; i >= 0; i--)

dest[i+4] = src[i];

return;

}

void copytoright(char *dest, char *src)

{

int i;

for(i = 0; i < 4; i++)

dest[i] = src[i];

return;

}

int pow(int a,int b)

{

int i,temp = 1;

for(i = 1; i <= b; i++)

temp *= a;

return (temp);

}

void findkey(char *tkey,int n)

{

int combine[] = { 60,27,43,23,54,75,90,39,92,

46,102,30,105,71,120,15};

int keyrule[] = { 2,0,3,1};

int i,count;

for(i=0,count = 0; i < 7 && count < 4; i++)

if(ISSET(combine[n],i))

tkey[count++] = key[i];

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

6

pbox(tkey,4,keyrule);

return;

}

void xor(char *dest, char *src)

{

int i;

for(i = 0; i < 4; i++)

dest[i] ^= src[i];

return;

}

5. EXPERIMENTS

5.1. The simple cases
First experiments are with the simple case of 50% of 'A', 25% of

'B' and 25% of 'C'. The Huffman tree in this case would be as in

the following figure below.

The string "AABBC", for example, would be encoded as

"00101011".

Expectation for an effective system was type I system because

type I system would affect all kinds of characters, while type II

system would not affect the highest-probability character. For this

case, the Huffman tree for the flipped bits with type I system

would be:

The string "AABBC" is

now encoded and encrypted as "11000001".

It is therefore decoded (without being encrypted) as

"CAAAAAA". The last "1" is left over because there is no such

code of only "1". DSID in this case is 5.

With type II system, the Huffman tree for the flipped bits with

type I system would be:

(Here also left 0 right 1)

The above string is now encoded and encrypted as

"00111110".

Note that code word for characters "B" and "C" are swapped with

each other and so "B" and "C" are swapped when they are

decoded (without being encrypted). That is "AACCB" and has

DSID of 3 which is 2 smaller than this value in type-l case.

The above string is now encoded and encrypted as "00111110".

Note that code word for characters "B" and "C" are swapped with

each other and so "B" and "C" are swapped when they are

decoded (without being encrypted). That is "AACCB" and has

DSID of 3 which is 2 smaller than this value in type-l case. But

when we experimented with large number of characters (1000

characters, as we did), the complexity in the alignments of

characters made DSID different from our anticipations.

6. CONCLUSIONS

Security has long been seen as a major adoption of Internet

technology in the enterprise. As networks have grown and

connected to the Internet, the spectre of the hacker has

responsible for both delivering information within the enterprise

and to its partners, and protecting it from unauthorised outsiders.

The security capabilities of the latest Internet and intranet

technologies enable companies to control the availability of

information and the authenticity of that information better than

ever before. The increasing sophistication of both server and

client software means that this unprecedented level of security can

be provided without requiring users to undergo complex and

bureaucratic procedures to gain legitimate access to sites. This

paper provides an outlook of network security and in the real text

cases, the results were encouraging. With the ratio of encryption

of about 10%, we could achieve the ratio of damage to the file of

nearly 80% in some cases. Although we could not give a

conclusion based upon those cases, they promised the potential of

selective encryption with the ratio of encryption as low as 10%.

Char Codeword

A 1

B 00

C 01

Char Codeword

A 1

B 11

C 10

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.4, November 2010

7

7. REFERENCES
[1] R.T. Morris, 1985. A Weakness in the 4.2BSD UNIX

TCP/IP Software. Computing Science Technical Report No.

117, AT&T Bell Laboratories, Murray Hill, New Jersey.

[2] S.M. Bellovin. Security Problems in the TCP/IP Protocol

Suite. Computer Communication Review, Vol. 19, No. 2, pp.

32-48, April 1989.

[3] Balachander Krishnamurthy and Craig E. Wills.

Characterizing privacy in online social networks. In

Proceedings of the Workshop on Online Social Networks,

pages 37–42, Seattle, WA USA, August 2008. ACM.

[4] Information Security Forum. Information Security Standards.

London: Information Security Forum, September 2001. p.1

[5] Vance, Bill. “Employees are your greatest assets… in

security too!” March 2001.

 www.techxans.org/resources/techxans.ppt

[6] Schneier, Bruce. Secrets and Lies - Digital Security in a

Networked World. New York:

 JohnWiley & Sons, August 2000. p.135-187, 255-317, 367-

388

[7] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques

for data hiding”, IBM

 Systems Journal, Vol. 35, 1996, pp. 313–336.

http://ijcaonline.org/
http://www.techxans.org/resources/techxans.ppt

