
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

23

Reliability Evaluation of Web Applications from
Click-stream Data

 Prof. R.Manjula Eswar Anand Sriram
 Associate Professor M.S(Software Engineering)
 School of Computing Sciences and Engineering School of Information Technology,
 VIT University, Vellore – 632014. VIT University, Vellore – 632014.
 Tamil Nadu, India. Tamil Nadu, India.

ABSTRACT
In the age of information and communication technology (ICT),

Web and internet have brought significant changes in

information technology. The dramatic change in website

development and their relative usage has led to the need of Web

based metrics .These metrics will accurately assess the efforts in

the web based applications .So the basic idea is to identify the

web metrics for evaluating reliability and maintainability of

Hypermedia applications where we characterize usage and

problems for web applications, evaluate their reliability and also

the potential aspects for reliability assessment and improvement.

Based on the characteristics of web applications and the overall

web environment, we classify web problems and focus on the

subset of source content problems. Using information about web

accesses, we drive various measurements that can characterize

web site workload at different levels of granularity .These

workload measurements, together with failure information

extracted from recorded errors are used to evaluate the

operational reliability for source events at a given website and

the potential for reliability improvement. As a result, to support

this strategy or methodology we extract web usage and failure

information from existing web logs. This failure information is

used to measure the reliability of web applications. Hence these

results obtained from the web based metrics can help us

analytically identically identify the effort assessment and failure

points in web based systems and make evaluation of reliability

of these systems simple.

 The rest of the paper is organized as follows: Section 2

Analyzes the general characteristics of the Web and its

reliability problems. Section 3 examines the contents of Web

logs and their use in evaluating Web site workload and Web

software reliability. Conclusions and perspectives are presented

in Section 4.

Index Terms
World Wide Web (WWW) and Internet, Web applications and

Web server logs, quality and reliability, reliability modeling,

workload measurement.

1. INTRODUCTION
With the prevalence of the World Wide Web (WWW, or simply

the Web) and people’s reliance on it in society today, ensuring

its satisfactory reliability is becoming increasingly important.

Various techniques exist today to characterize workload for

general software and computer systems and to measure and

assure their reliability [9], [12], [21]. However, the Web

environment presents many new challenges [6], [14] and

requires adapted or newly developed techniques based on the

characterization of the Web, its usage, and related problems. For

Web applications, various log files are routinely kept at Web

servers. In this paper, we extract Web usage and failure

information from these log files to evaluate Web software

reliability and the potential for reliability improvement.

2. RELIABILITY AND THE WEB
We next examine the general characteristics of the Web and

common problems in Web applications to set the stage for us to

evaluate Web software reliability.

2.1 Defining Reliability for Web Applications

and Their Components
The reliability for Web applications can be defined as the

probability of failure-free Web operation completions. We

define Web failures as the inability to correctly obtain or deliver

information, such as documents or computational results,

requested by Web users. This definition conforms to the

standard definition of failures as being the behavioral deviations

from user expectations [5]. Based on this definition, we can

consider the following failure sources:

 Host, network, or browser failures, that prevent the

delivery of requested information to Web users. These failures

are similar to failures in regular computer systems, network, or

software, which can be analyzed and assured by existing

techniques [9], [12], [21].

 Source content failures, which prevent the

acquisition of the requested information by Web users because

of problems such as missing or un-accessible files, trouble with

starting JavaScript, etc. These failures are closely related to the

specific Web-based services that a site provides, and possess

various characteristics unique to the Web environment [6], [14].

 User errors, such as improper usage, mistyped URL,

etc., may also cause problems, which can be addressed through

user education, better usability design, etc. These failures are

beyond the control of Web service or content providers.

The end-to-end reliability defined earlier, which measures the

probability of failure-free completions of Web operations,

includes all the problems listed above in its reliability

evaluation. However, as also noticed above, many of these

problems can be either addressed by existing approaches or are

simply beyond the control and responsibility of the local Web

content providers. In addition, ensuring reliability defined this

way would require concerted quality assurance effort over the

whole Internet by the global community. On the other hand,

Web site software problems, or Web source content problems

noted above, are a significant part of the overall problems for

Web operations. In addition, they can generally be addressed

locally at the Web site by the content providers. Consequently,

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

24

we focus on the Web source content failures and the related

Web software reliability in this study. Also worth noting is the

differences between Web software reliability we restrict

ourselves to and Web site availability. Normal maintenance

activities and network problems may make a Web site

temporarily unavailable. However, such problems are generally

perceived as less serious by Web users than Web software

problems because the users are more likely to succeed in

accessing required information after temporary unavailability,

while software problems would persist unless the underlying

causes are identified and fixed. This fact also partially justifies

our focus on Web software reliability.

2.2 Measuring Web Software Reliability and

Workload
In general, the failure information alone is not adequate to

characterize and measure the reliability of a software system,

unless there is a constant workload [9], [12]. Due to the vastly

uneven Web traffic observed in previous studies [1], [15], we

need to measure both the Web failures and related workload for

reliability analyses. Specific characteristics that make Web

workload measurement different from that for traditional

software systems include:

 Massiveness and diversity: Web applications provide

cross-platform universal access to Web resources for

everyone with an Internet access. The massive user

population, the diverse hardware or software

configurations, and the varied usage patterns need to

be reflected in the selected workload measures.

 Document and information focus, as compared

to the computational focus for most traditional

workload. Although some computational capability

has evolved in newer Web applications, information

search and retrieval still remain the dominant usage

for most Web users. A fundamental difference exists

between these two workload types.

These characteristics require us to measure actual Web workload

to ensure its satisfactory reliability instead of indiscriminately

using generic measures suitable for traditional computation-

intensive workload. Due to the nature of uneven Web workload,

only usage-dependent workload measures among the traditional

ones, such as CPU execution time, runs, and transactions, need

to be considered for reliability evaluation [9],[12]. However, the

user focus and substantial amount of idle time during browsing

sessions make any variation of execution time unsuitable for

Web workload measurement. Similarly, the dominance of non-

computational tasks also makes computational task oriented

transactions unsuitable for Web workload measurement.

2.3 Basics of Reliability Analysis and Modeling

Both the failure information and the related workload

measurements provide us with data input to various software

reliability models [9], [12], [18]. The output of these models can

help us evaluate the Web software reliability and the potential

for reliability improvement.

 Two basic types of software reliability models are:

input domain reliability models (IDRMs) and time domain

software reliability growth models (SRGMs) [9], [12]. IDRMs

can provide a snapshot of the Web site’s current reliability. For

example, if a total number of f failures are observed for n

workload units, the estimated reliability R according to the

Nelson model [13], one of the most widely used IDRMs, can be

obtained as:

R= (n-f)/n=1-(f/n) =1-r

Where r is the failure rate, which is also often used to

characterize reliability. When usage time ti is available for each

workload unit i, the summary reliability measure, mean-time-

between failures (MTBF), can be calculated as:

MTBF= (1/f) ∑ti

 I

When the usage time ti is not available, we can use the number

of workload units as the rough time measure. In this case,

MTBF=n/f

If discovered defects are fixed over the observation period, the

defect fixing effect on reliability (or reliability growth due to

defect removal) can be analyzed by using various software

reliability growth models (SRGMs) [9], [12]. For example, in

the widely used Goel-Okumoto model [4] the failure arrival

process is assumed to be a non-homogeneous Poisson process.

The expected cumulative failures, m (t), over time t is given by

the formula:

m(t)=N(1-e
-bt

)

Where the model constants N (total number of defects in the

system) and b (model curvature) need to be estimated from the

observation data. SRGMs can also be used to assess the

potential for reliability improvement.

2.4 Analyzing Web Logs for Reliability

Evaluation
Monitoring Web usage and keeping various logs are necessary

to keep a Web site operational. Two types of log files are

commonly used by Web servers: Individual Web accesses, or

hits, are recorded in access logs, with sample entries given in

Table 1; related problems are recorded in error logs, with sample

entries given in Table 2. Analyzing information stored in such

logs can help us evaluate Web site workload and Web software

reliability, as discussed below.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

25

Table 1. Sample Entries in an Access Log

Table 2. Sample Entries in an Error Log

3. ERROR LOG ANALYSIS
Error logs typically include details about the problems

encountered. The format is simple: a time-stamp followed by the

error or warning message, such as in Table 2.Common problems

or error types are listed in Table 3.Notice that most of these

errors conform closely to the source content failures we defined

in Section 2. Therefore, they can be used in our Web software

reliability evaluation. Questions about error occurrences and

distribution can be answered directly by analyzing error logs.

However, as discussed in Section 2, evaluation of Web software

reliability also needs the measurement data for Web usage or

workload. The Web usage information and the related workload

measurements can be extracted from Web server access logs, as

described below.

3.1 Analysis of Access Log Contents
A “hit” is registered in an access log if a file corresponding to an

HTML page, a document, or other Web content is explicitly

requested, or if some embedded content, such as graphics or a

Java class within an HTML page, is implicitly requested or

activated.

Table 3. Error Types

Information recorded in access logs typically includes: the

requesting computer, date and time of the request, name and size

of the requested file, HTTP status code, referral page, and client

name. Specific information useful to our workload analysis

recorded in access logs includes:

 The IP number of the machine making the request.

 Date and time that the transfer took place.

 Total number of bytes transferred.

They are recorded as the first, fourth, and seventh field,

respectively, of each hit entry in the access log, as illustrated in

Table 4. If the value for any field is not available, a “_” is put in

its place.

3.2 Extracting Workload Measures from

Access Logs
As mentioned in Section 2, various software reliability models

relate observed failures to usage time for reliability evaluation.

From the perspective of Web service providers, the usage time

for Web applications is the actual time spent by every user at the

local Web site. However, the exact time is difficult to obtain and

may involve prohibitive cost or overhead associated with

monitoring and recording dynamic behavior by individual Web

users [15]. One additional complication is the situation where a

user opens a Web page and continues with other tasks unrelated

to the page just accessed. In this situation, the large gap between

successive hits is not a reflection of the actual Web usage time

by this user. To approximate the usage time, we can use various

workload measures considered below.

 The most obvious workload measure is to count the

number of hits, because each hit represents a specific activity

associated with Web usage, and each entry in an access log

corresponds to a single hit, thus it can be extracted easily. In

fact, this has already been done for statistical Web testing and

reliability assurance, which also demonstrated that hit count is a

viable candidate for the evaluation of Web site workload and

Web software reliability.

Table 4. Summary of Total Recorded Errors by Type

Table 4 illustrates the number of errors for a particular error

type. Based on the total number of errors and the workload

measures reliability can be calculated by using input domain

reliability models.

 The Web workload measures at different levels of

granularity and from different perspectives that we can extract

from Web server access logs include:

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

26

 Number Of Hits, The overall hit count defined above

can be misleading if the workload represented by

individual hits shows high variability.

 Number of Bytes Transferred, The number of bytes

transferred, or byte count, as the workload measure of

finer granularity, which can be easily obtained by

counting the number of bytes transferred for each hit

recorded in access logs.

 Number Of Users, User count is another alternative

workload measure meaningful to the organizations

that maintain the Web sites and support various

services at the user level. When calculating the

number of users for each day, we treat each unique IP

address as one user. So, no matter how many hits were

made from the same computer, they are considered to

be made by the same user. This measure gives us a

rough picture of the overall workload handled by the

Web site. One of the drawbacks of user count is its

coarse granularity, which can be refined by counting

the number of user sessions. In this case, along with

the IP address, access time can be used to calculate

user sessions: If there is a significant gap between

successive hits from the same IP address, we count the

later one as a new session. In practice, the gap size can

be adjusted to better reflect appropriate session

identification for the specific types of Web

applications.

 Number of User Sessions, The number of user

sessions per day may be a better measure of overall

workload than the number of users, because big access

gaps are typically associated with changes of users or

non-Web related activities by the same user. Each user

who accesses the same Web site from the same

computer over successive intervals will be counted by

user sessions, as long as such a gap exists in between.

Even for a single user, a significant access gap is more

likely to be associated with different usage patterns

than within a single time burst. Therefore, by using

user sessions, we can count the users’ active

contribution to the overall Web site workload more

accurately.

.

We implemented utility programs in Perl to count the number of

errors, number of hits, and frequently used navigation patterns.

These utility programs analyze the workload data defined above.

The output for the utility programs is demonstrated below.

Figure 1. Extracting the Access Log File

The above figure demonstrates extracting the access log file and

dividing it into readable format to analyze the log file.

Figure 2. Calculation of No. of Hits per page

The above figure demonstrates the individual hit count per each

page and this result can be used as a workload measure.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

27

Figure 3. Calculation of Total No: of Hits

Fig 3 demonstrates the total number of hits for a website which

can be considered as a workload measure for the calculation of

reliability.

3.3 Error Log Analysis and Reliability

Assessment

Questions about error occurrences and distribution, as well as

overall reliability of the Web site, can be answered by analyzing

error logs and related information. However, although there are

many Web log analysis tools available today, they only provide

very limited capability for error analysis. For example, the log

analyzer's Analog and FastStats only analyze access logs for

common HTML errors. Most log analyzers do not analyze error

logs because of the lack of a consistent format. Therefore,

existing tools are only used in our approach to analyze the

general usage information, while new utility programs are

constructed to analyze error data for testing effectiveness and

reliability analyses. As discussed before, access logs only

contain less detailed information about a subset of the errors

reported in error logs. In addition, if we see a large number of

similar errors in an access log, there might be other problems

(not recorded in the access log but may be recorded in the error

log) not related to the application or the Web server but with the

ISP (Internet service provider). Therefore, analyzing error logs

is necessary to help us locate and debug problems and to assure

the quality of Web applications.We have constructed utility

programs written in Perl to obtain the required error or defect

data. These programs also extract various usage data from

access logs. Such usage and error data can be used to provide an

objective assessment of the reliability of Web applications, by

fitting these data to various reliability models. The output for the

utility programs is demonstrated below.

Figure 4. List of Errors in Log File

 Properly selected usage and failure data can be fitted to various

input domain reliability models to provide a snapshot of the

Web applications' current reliability. For example, if a total

number of f errors are recorded (referred to as failures in

software reliability engineering, denoting behavioral deviations)

for n hits, the estimated reliability R according to the Nelson

model ,one of the most widely used input domain reliability

models, can be obtained as:

R= (n-f)/n=1-(f/n) =1-r

4. CONCLUSION AND PERSPECTIVES

By analyzing the unique problems and challenges for the Web

environment, we have developed an approach for Web software

reliability evaluation based on information extracted from

existing Web server logs. By using existing tools to extract

usage information, we have kept the additional effort for

implementing our approach to a reasonable level. We developed

utility programs in Perl to analyze Web logs; we have provided

necessary capabilities not supported by existing tools. Our key

findings are summarized below:

 Measure derivation and data extraction: Specific Web

software problems related to missing files and four

workload measures, bytes transferred, hit count,

number of users, and number of sessions, were derived

in this paper for Web software reliability evaluation.

Detailed failure data can be extracted from error logs.

When such logs are not available, rough failure data

can be extracted from access logs. Hit count, byte

count, and user count can be easily extracted from

access logs, due to their direct correspondence to

access log entries and the embedded data fields “bytes

transferred” and “IP address.” Session count

computation may involve history information for

individual users or unique IP addresses, but properly

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

28

identified user sessions with appropriate time-out

values can reflect Web usage better than simply

counting the users.

 Assessing the operational reliability for Web software:

When used with failure data to estimate failure rate or

reliability, all four workload measures proposed in this

paper produced more consistent and stable reliability

estimates than using daily errors alone. They offer

reliability assessments from different perspectives, and

each may be suitable for specific situations. For

example, byte count might be more suitable for traffic

measurement and related reliability interpretations; hit

count might be more meaningful to Web users as they

browse individual pages; while number of users or

sessions might be more suitable for high level Web

site reliability characterization.

There are also some open issues we plan to address in future

studies, including:

 The impact of Web site changes and related fault

injections: Our reliability analyses performed in this

paper assumed the stability of the Web sites under

study, and our evaluation of reliability growth

potential additionally assumed that none or few new

faults were injected. Therefore, a direct generalization

of this study is to study the impact of Web changes

and injection of new faults on Web software

reliability.

 Risk identification for reliability improvement: The

error distribution is highly uneven, as shown in this

paper and demonstrated in further studies we

performed to examine the error distributions across

error types, originators, error sources, page types, etc.

These uneven distributions point out the importance of

applying risk identification techniques to identify

problematic areas in the future for focused Web

software reliability improvement.

 Better ways to count bytes transferred: Byte counting

in this paper ignored about 15 percent of access log

entries with missing information for their “byte

transferred” field, which typically correspond to error

entries and cached Web contents. Treating them as 0s

is convenient but runs contrary to the general practice

in software reliability engineering, where all usage

time or activities should be counted regardless of

whether the specific usage resulted in successful

completions or failures. This fact points to the need for

further investigation and possible alternative data

treatment when we use bytes transferred for reliability

analyses.

In addition, we also plan to identify better existing tools,

develop new tools and utility programs, and integrate them to

provide better implementation support for our strategy. All these

efforts should lead us to a more practical and effective approach

to achieve and maintain high reliability for Web applications.

5. REFERENCES
 [1] M.F. Arlitt and C.L. Williamson, “Internet Web Servers:

Workload Characterization and Performance Implications,”

IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 631-645,

Oct. 1997.

 [2] B. Behlandorf, Running a Perfect Web Site with Apache,
second ed. MacMillan Computer Publishing, 1996.

 [3] M.E. Crovella and A. Bestavros, “Self-Similarity in

World Wide Web Traffic: Evidence and Possible Causes,”

IEEE/ACM Trans.Networking, vol. 5, no. 6, pp. 835-846,

Dec. 1997.

[4] A.L. Goel and K. Okumoto, “A Time Dependent Error

Detection Rate Model for Software Reliability and Other

Performance Measures,” IEEE Trans. Reliability, vol. 28,
no. 3, pp. 206-211, 1979.

[5] IEEE Standard Glossary of Software Engineering

Terminology, Number STD 610.12-1990, IEEE, 1990.

[6] C. Kallepalli and J. Tian, “Measuring and Modeling Usage

and Reliability for Statistical Web Testing,” IEEE Trans.

Software Eng., vol. 27, no. 11, pp. 1023-1036, Nov. 2001.

[7] A.G. Koru and J. Tian, “Defect Handling in Medium and

Large Open Source Software Projects,” IEEE Software,
vol. 21, no. 4, pp. 54-61, July 2004.

[8] Z. Li and J. Tian, “Analyzing Web Logs to Identify

Common Errors and Improve Web Reliability,” Proc.
IADIS Int’l Conf. E-Society, pp. 235-242, June 2003.

[9] Handbook of Software Reliability Engineering. M.R. Lyu,

ed. McGraw-Hill, 1995.

[10] L. Ma and J. Tian, “Analyzing Errors and Referral Pairs to

Characterize Common Problems and Improve Web

Reliability,” Proc. Third Int’l Conf. Web Eng., pp. 314-
323, July 2003.

[11] A.L. Montgomery and C. Faloutsos, “Identifying Web

Browsing Trends and Patterns,” IEEE Computer, vol. 34,

no. 7, pp. 94-95, July 2001.

[12] J.D. Musa, A. Iannino, and K. Okumoto, Software

Reliability: Measurement, Prediction, Application.
McGraw-Hill, 1987.

[13] E. Nelson, “Estimating Software Reliability from Test

Data,” Microelectronics and Reliability, vol. 17, no. 1, pp.
67-73, 1978.

[14] J. Offutt, “Quality Attributes of Web Applications,”

Software, vol. 19, no. 2, pp. 25-32, Mar. 2002.

[15] J.E. Pitkow, “Summary of WWW Characterizations,”

World Wide Web, vol. 2, nos. 1-2, pp. 3-13, 1999.

[16] N.F. Schneidewind, “Software Reliability Model with

Optimal Selection of Failure Data,” Trans. Software Eng.,
vol. 19, no. 11, pp. 1095-1104, Nov. 1993.

[17] N. Singpurwalla, “Software Reliability Modeling by

Concatenating Failure Rates,” Proc. Ninth Int’l Symp.

Software Reliability Eng., pp. 106-110, Nov. 1998.

[18] R. Thayer, M. Lipow, and E. Nelson, Software Reliability.

North- Holland, 1978.

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

29

[19] J. Tian, “Integrating Time Domain and Input Domain

Analyses of Software Reliability Using Tree-Based

Models,” IEEE Trans. Software Eng., vol. 21, no. 12, pp.

945-958, Dec. 1995.

[20] J. Tian, “Better Reliability Assessment and Prediction

through Data Clustering,” IEEE Trans. Software Eng., vol.
28, no. 10, pp. 997- 1007, Oct. 2002.

[21] K.S. Trivedi, Probability and Statistics with Reliability,

Queuing, and Computer Science Applications, second ed.

John Wiley & Sons, 2001.

[22] Tsai, W.T., Zhang, D., Chen, Y., Huang, H., Paul, R., and

Liao, N., "A Software Reliability Model for Web Services,"

Proceedings of IASTED International Conference on

Software Engineering and Applications, pp. 144-149, MIT
Cambridge, USA, 2004.

 [23] Venkatraman, S.: Mobile Computing Models – Are they

Meeting the Mobile Computing Challenges? Association of
Computing Machinery Journal. New Zealand. 1 (2005) 112

 [24] Dudley, G., Joshi, N., Ogle, D.M., Subramanian, B. and

Topol, B.B.:Autonomic Self-Healing Systems in a Cross-

Product IT Environment. In Proceedings of the

International Conference on Autonomic Computing

(2004)312-313

 [25] Vidales, P., Baliosian, J., Serrat, J., Mapp, G., Stajano, F.

and Hopper, A.: Autonomic System for Mobility Support in

4G Networks. IEEE Journal on Selected Areas in
Communications. 23 (12) (2005) 2288-2304

 [26] Kumar, V., Cooper, B.F., Cai, Z., Eisenhauer, G., Schwan,

Resource-aware distributed stream management using

dynamic overlays. In: Proceedings of the 25th International

Conference on Distributed Computing Systems (ICDCS

2005), Columbus, OH, USA, IEEE Computer Society
(2005) 783–792.

 Authors

 Eswar Anand Sriram received his MS in Software Engineering

from Vellore Institute Of Technology, Vellore , India in 2010.He

is now working as Assistant Systems Engineer at TATA

Consultancy Services , Chennai , India . His area of interest

includes Software Metrics , Operating Systems and Design

Patterns.

Prof. R.Manjula received her B.E in Computer Science &

Engineering from University of Vishwesvaraya and

Engineering, Bangalore, Karnataka State, India in 1992 and

M.E in Software Engineering from Anna University, Tamil

Nadu, India in 2001. She is now working as Associate

Professor and also as Ph.d Candidate affiliated with School of

Computing Sciences and Engineering at Vellore Institute of

Technology, Vellore, India. Her area of specialization

includes Software Process modeling, Software Metrics,

Software Metrics, Software Testing and Metrics, XML-Web

Services and Service Oriented Architecture.

http://ijcaonline.org/

