
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

16

Analysis of Artificial Neural Network for Financial Time
Series Forecasting

 Anupam Tarsauliya Shoureya Kant Rahul Kala
 Researcher Researcher Researcher
 IIITM IIITM IIITM
 Gwalior Gwalior Gwalior

 Ritu Tiwari Anupam Shukla
 Asst. Preofessor Professor
 IIITM IIITM
 Gwalior Gwalior

ABSTRACT

Financial forecasting has been challenging problem due to its high

non-linearity and high volatility. An Artificial Neural Network

(ANN) can model flexible linear or non-linear relations- hip among

variables. ANN can be configured to produce desired set of output

based on set of given input. In this paper we attempt at analyzing the

usefulness of artificial neural network for forecasting financial data

series with use of different algorithms such as backpropagation,

radial basis function etc. With their ability of adapting non-linear and

chaotic patterns, ANN is the current technique being used which

offers the ability of predicting financial data more accurately. "A x-y-

1 network topology is adopted because of x input variables in which

variable y was determined by the number of hidden neurons during

network selection with single output." Both x and y were changed.

Keywords

ANN, Financial forecasting, BPA, LRN, RBF, GRNN

1. INTRODUCTION

Forecasting is a process that produces a set of outputs by a given set

of input variables. The variables are normally historical data [1].

Basically, forecasting assumes that future occurrences are based, at

least in part, on presently observable or past events. It assumes that

some aspects of the past patterns will continue into the future. Past

relationships can then be discovered through study and observation.

The basic idea of forecasting is to find an approximation of mapping

between the input and output data in order to discover the implicit

rules governing the observed movements [2].

Stock market forecasting has always been a challenging problem. The

source of its difficulty is the complex interactions between the

market-influencing factors and the unknown random processes like

unexpected news or other sudden changes in the influencing factors.

On the other hand, there is some risk to investment in the stock

market due to its unpredictable behaviors. Thus, an „intelligent‟

prediction model for financial data forecasting would be deeply

desired and would of wider interest. ANNs are relatively recent

method for business forecasting [3]. The success of ANN

applications can be qualified of their features and powerful pattern

recognitions capability. The use of ANN in this field has been

growing due to their ability to model complex nonlinear systems on

sample data. An ANN is a new kind of computing tool that is not

limited by equations or rules. ANN functions by finding correlations

and patterns in the data which you provide. These patterns become a

part of the network during training [4]. A separate network might be

needed for each problem you want to solve, but many networks

follow the same basic format.

Structure of the network affects the accuracy of the forecast. Network

configuration mainly depends on the number of hid- den layers,

number of neurons in each hidden layer, number of input neurons and

the selection of activation function. No clear cut guide lines exist up

to date for deciding the architecture of ANN. Mostly it is problem

dependent. An ANN has to be con- figured such that the application

of a set of inputs produces the desired set of outputs. Various

methods to set the strengths of the connections exist. One way is to

set the weights explicitly, using a priori knowledge. Another way is

to train the neural network by feeding it teaching patterns and letting

it change its weights according to some learning rule [5]. The

learning situations in neural networks may be classified into three

distinct sorts. In learning, an input vector is presented at the inputs

together with a set of desired responses, one for each node, at the

output layer. A forward pass is done, and the errors or discrepancies

between the desired and actual response for each node in the output

layer are found. These are then used to determine weight changes in

the net according to the prevailing learning rule. These networks

have self-learning capability and are fault-tolerant as well as noise-

immune, and also have applications in various fields like system

identification, pattern recognition, classification, speech recognition,

image processing, etc.

Back propagation is a form of supervised learning for multi-layer

nets, also known as the generalized delta rule. Error data at the output

layer is "back propagated" to earlier ones, allowing incoming weights

to these layers to be updated. It is most often used as training

algorithm in current neural network applications. The back

propagation algorithm was developed by Paul Werbos in 1974 and

rediscovered independently by Rumelhart and Parker. Since its

rediscovery, the back propagation algorithm has been widely used as

a learning algorithm in feed forward multilayer neural networks.

What makes this algorithm different than the others is the process by

which weights are calculated during the learning network. In general,

the difficulty with multilayer Perceptrons is calculating weights of the

hidden layers in an efficient way that result in the least (or zero)

output error; the more hidden layers there are, the more difficult it

becomes. To update the weights, one must calculate an error. At the

output layer this error is easily measured; this is the difference

between the actual and desired outputs. At the hidden layers,

however, there is no direct observation of the error; hence, some

other technique must be used. To calculate an error at the hidden

layers that will cause minimization of the output error, as this is the

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

17

ultimate goal. The backpropagation algorithm is an involved

mathematical tool; however, execution of the training equations is

based on iterative processes, and thus is easily implementable on a

computer.

Several studies relating to ANN and statistical models have been

conducted in the literature. Traditional forecasting methods are

limited in their effectiveness as they make assumptions about the

distribution of the underlying data, and often fail to recognize the

interrelatedness of variables [6]. Both linear and nonlinear models

were used to predict stock returns [7] who emphasize the Nonlinear

Model proving to be more effective. Such studies prove that the

nonlinear model presents more consistent results for stock exchange

market. For this reason, ANN applications have been widely used in a

variety of areas in financial markets [8], [9]. Reference [9] confirmed

that ANN was used for the solution of numerous financial problems.

References [10], [11], [12] emphasized that ANN could be used in

the prediction of financial markets, in particular, the prediction of

stock market indexes which are considered to be a barometer of the

markets in many countries. Empirical evidence suggests that although

these models appear to be capable of explaining the movements of

major exchange rates in the long run and in economies experiencing

hyperinflation, their performance is poor when it comes to the short

run and out-of-sample forecasting [13]. Conventional time series

models forecasting on global approximation models, employing

techniques such as linear and non-linear regression, polynom- ial

fitting and artificial neural networks. Such models are better suited to

problems with stationary dynamics [14]. In [15] and [16] the

application of unsupervised clusters for the segmentation of the input

space, and feed forward neural networks (FNNs) acting as local

predictors for each identified cluster, was proposed. Neural network

researchers and developers using the generalized method for

determining the mini-mum necessary training set size will be able to

implement neural networks with the highest forecasting performance

at the least cost [17].

2. METHODOLOGY

We load the given time series dataset (un-normalized) into the system

for its forecasting. For the loaded dataset, we bifurcate dataset into

training and testing datasets respectively. A random dataset division

is followed to result 70% of dataset as training dataset and remaining

30% as testing dataset. Training dataset is the outcome of random

method followed to bifurcate the loaded dataset. Training dataset is

used for defining the architecture of the neural network and train the

defined neural network based on its data to predict the dataset.

Testing dataset thus obtained is used for simulating the trained

network, checking the error or accuracy of the trained network. We

compare the output data as given by the network with the testing data

set. The results of these comparisons are dealt in detail in later part of

the paper.

The training dataset which is the 70% of the dataset is first converted

into logarithmic form and then are normalized. The datasets are

normalized using the general normalization formulae. The datasets

are then fed into the network and are trained through various training

algorithms which are described later in the paper. During the training

phase the number of hidden neurons, the epochs, the momentum etc

are altered and the network weights and biases are set as per these

alterations. After the network has been trained we perform the testing

phase on the new defined network. The remaining 30% of the dataset

which is defined for the testing purpose is fed into the new trained

network and is simulated accordingly. The block diagram of the

methodology is shown in figure 1.

Figure1. Flow Chart for Methodology

The above mentioned data sets are taken and are processed through

the methodology stated above. Each data set is exposed to different

algorithms and is trained accordingly. The different algorithms used

are as follows:

2.1 Back Propagation Algorithm (BPA)

Backpropagation is the generalization of the Widrow-Hoff learning

rule to multiple-layer networks and nonlinear differentiable transfer

functions [20]. Input vectors and the corresponding target vectors are

used to train a network until it can approximate a function, associate

input vectors with spec- ific output vectors, or classify input vectors

in an appropriate way as defined by you. Networks with biases, a

sigmoid layer, and a linear output layer are capable of approximating

any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the

Widrow-Hoff learning rule, in which the network weights are moved

along the negative of the gradient of the performance function. The

term backpropagation refers to the manner in which the gradient is

computed for nonlinear multilayer networks. There are a number of

variations on the basic algorithm that are based on other standard

optimization techniques, such as conjugate gradient and Newton

methods.

2.2 Layer Recurrent Network (LRN):

In the LRN, there is a feedback loop, with a single delay, around each

layer of the network except for the last layer. The original Elman

network had only two layers, and used a tansig transfer function for

the hidden layer and a purelin transfer function for the output layer.

The original Elman network was trained using an approximation to

the backpropagation algorithm. The newlrn command generalizes the

Elman network to have an arbitrary number of layers and to have

arbitrary transfer functions in each layer.

2.3 Radial basis network (RBN)

The function newrb iteratively creates a radial basis network one

neuron at a time. Neurons are added to the network until the sum-

squared error falls beneath an error goal or a maximum number of

neurons has been reached. The function newrb takes matrices of input

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

18

and target vectors P and T, and design parameters goal and spread,

and returns the desired network.

2.4 Generalized Regression Networks (GRNN)

 A generalized regression neural network is often used for function

approximation. It has a radial basis layer and a spec- ial linear layer.

The output of the network is in the normalized form, so we first

denormalize the output and then its exponent is taken. After the

following process is done the output comes in a form comparable to

the original dataset. Now the comparison of the input and the output

dataset is done and the results are explained in details in the later part

of the paper.

3. RESULTS

3.1 Research Data
We have used two different data sets for our research. The data (un-

normalized) have been collected from Prof. Rob J Hyndman‟s

website http://robjhyndman.com/TSDL/. Data sets analyzed are as:

Daily closing price of IBM stock, Jan. 01 1980 - Oct. 08 1992.

Source: [18], Daily S & P 500 index of stocks, Jan. 01 1980 - Oct.

08 1992. Source: [18]. Table 1 summarizes the stated

information.
The first few data indexes of series are used for the research. For

training, 70% of the data of the series has been used and remaining

30% is used for testing.

Table 1. Time Series Data Sets

Time Series Standard

Deviation

Mean Count

Daily IBM 5.736916

60.89908

500

Daily S&P 10.1308

123.3728

500

3.2 Data Analysis
3.2.1 Backpropagation Algorithm (BPA)
Below is the table for marking efficient artificial neural network

architecture for different data series with backpropagation as training

algorithm. We have set the input vector of constant neurons with

specified value of learning rate and momentum. Epochs are kept

constant at 3000. We started optimizing architecture by gradually

increasing the number of hidden neurons. As the number of hidden

neurons increase the mean square error first decreases gradually and

then starts increasing. The variation of the network output is depicted

in the table. The value of the hidden neuron for which the most

optimum result is obtained and is taken into consideration for further

optimizing it with learning rate and momentum.

After the obtained optimized values for hidden neurons, the learning

rate and momentum are optimized. These values are used for

obtaining the optimum input vector set. The input vector is gradually

increased. The mean square error simultaneously increases and then

decreases. The most optimum neural network architecture for

backpropagation training algorithm is obtained for the two datasets.

The analysis for the two datasets is given below.

Table 2 and Table 3 show the analysis for daily IBM.

Table 2. Diff. ANN Arch. for Daily IBM using BPA at

epochs=3000

Different ANN

Architecture

x-y-1 lr mc Mean S.D.

10-2-1 0.5 0.7 2.79652 0.54519

10-5-1 0.5 0.7 2.08174 0.346772

10-10-1 0.5 0.7 2.17914 0.093233

10-20-1 0.5 0.7 2.17464 0.297468

10-30-1 0.5 0.7 2.56222 0.246952

10-5-1 0.3 0.7 1.98028 0.463858

10-5-1 0.7 0.7 1.95362 0.487149

Table 3. Diff. ANN Arch. varying inputs for Daily IBM using

BPA at epochs=3000

Different Number Of

Inputs

x-y-1 lr mc Mean S.D.

05-5-1 0.3 0.7 2.08604 0.378809

08-5-1 0.3 0.7 2.20682 0.386111

10-5-1 0.3 0.7 1.98028 0.463858

15-5-1 0.3 0.7 2.68886 0.433932

20-5-1 0.3 0.7 2.4397 0.332563

Table 4 shows the most optimal structure for daily IBM data series.

Table 4. Optimum table

x-y-1 lr mc Mean S.D.

10-05-1 0.3 0.7 1.98028 0.463858

Table 5 and Table 6 show the analysis for daily S&P.

Table 5. Diff. ANN Arch. for Daily S&P using BPA at

epochs=3000

Different NN

Architecture

x-y-1 lr mc Mean S.D.

10-2-1 0.5 0.7 6.28158 2.078473

10-5-1 0.5 0.7 3.6688 0.745425

10-10-1 0.5 0.7 3.52292 0.555277

10-20-1 0.5 0.7 3.43212 0.792911

10-30-1 0.5 0.7 5.19912 0.861521

10-20-1 0.3 0.7 4.59012 0.697043

10-20-1 0.7 0.7 3.73926 0.768024

10-20-1 0.8 0.7 3.15062 0.592651

10-5-1 0.8 0.5 3.5666 0.692245

10-5-1 0.8 0.9 3.91194 0.80667

Table 6. Diff. ANN Arch. varying inputs for Daily S&P using

BPA at epochs=3000

Different Number Of

Inputs

x-y-1 lr mc Mean S.D.

05-20-1 0.8 0.7 3.51574 1.119034

08-20-1 0.8 0.7 3.03788 0.629401

10-20-1 0.8 0.7 3.15062 0.592651

15-20-1 0.8 0.7 3.78 0.944653

20-20-1 0.8 0.7 4.06736 0.833488

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

19

Table 7 shows the most optimal structure for daily S&P data series.

Table 7. Optimum Table

x-y-1 lr mc Mean S.D.

8-20-1 0.8 0.7 3.03788 0.629401

3.2.2 Layer-Recurrent Network (LRN)
Below are the tables for marking efficient artificial neural network

architecture for different data series with Layer-Recurrent Network as

training algorithm. We have set the input vector of constant neurons

with specified value. Epochs are kept constant at 30. We started

optimizing architecture by gradually increasing the number of hidden

neurons. As the number of hidden neurons increase the mean square

error first decreases gradually and then starts increasing and again

decreases. It shoes abrupt changes in the rmse. The variation of the

network output is depicted in the table. The value of the hidden

neuron for which the most optimum result is obtained and is taken

into consideration for further optimizing it with learning rate and

momentum.

After the obtained optimized values for hidden neurons, the input

vector set is optimized. The input vector is gradually increased. The

mean square error decreases and then increases. The most optimum
neural network architecture for Layer-Recurrent Network training

algorithm is obtained for the two datasets. The analysis tables for the

two datasets are given below.

Table 8 and Table 9 show the analysis for daily IBM.

Table 8. Diff. ANN Arch. varying hidden neurons for Daily IBM

using LRN

Different NN architecture

x-y-1 RMSE S.D.

10-1-1 0.96118 0.10258995

10-3-1 0.92746 0.08610867

10-5-1 2.13334 2.02196345

10-8-1 1.93962 2.18422513

10-10-1 0.9874 0.06050483

10-15-1 2.74854 2.54473861

Table 9. Diff. ANN Arch. varying inputs for Daily IBM using

LRN

Different Number Of Inputs

x-y-1 RMSE S.D.

5-3-1 1.04054 0.07314635

8-3-1 0.90856 0.09027615

10-3-1 0.92746 0.08610867

15-3-1 2.91092 2.73857886

20-3-1 5.52258 0.63822251

Table 10 shows the most optimal structure for daily IBM data series.

Table 10. Optimum Table

x-y-1 RMSE S.D.

8-3-1 0.90856 0.09027615

Table 11 and Table 12 show the analysis for daily S&P.

Table 11. Diff. ANN Arch. varying hidden neurons for Daily S&P

using LRN

Different NN architecture

x-y-1 RMSE S.D.

10-1-1 1.13512 0.08749358

10-3-1 1.15496 0.17080976

10-5-1 1.05572 0.05598077

10-8-1 1.18746 0.04093053

10-10-1 1.05518 0.09418026

10-15-1 1.0931 0.12033027

Table 12. Diff. ANN Arch. varying inputs for Daily S&P using

LRN

Different input

x-y-1 RMSE S.D.

5-10-1 1.19688 0.11266555

8-10-1 1.1948 0.17505239

10-10-1 1.05518 0.09418026

15-10-1 1.20526 0.19910125

20-10-1 1.1028 0.07104798

Table 13 shows the most optimal structure for daily S&P data series.

Table 13. Optimum Table

x-y-1 RMSE S.D.

10-10-1 1.05518 0.09418026

3.2.3 Radial Basis Network (RBN):
Below are the tables for marking efficient artificial neural network

architecture for different data series with Radial basis network as

training algorithm. We have set the input vector of constant neurons

with specified value. We started optimizing architecture by gradually

increasing the spread. As the value of spread increase the mean

square error first increases gradually and then starts decreasing. The

variation of the network output is depicted in the table. The value of

the spread for which the most optimum result is obtained and is taken

into consideration for further optimizing it with learning rate and

momentum.

After the obtained optimized values of spread, the input vector set is

optimized. The input vector is gradually increased. The mean square

error simultaneously increases and then decreases. The most optimum

neural network architecture for Radial basis network training

algorithm is obtained for the two datasets. The analysis tables for the

two datasets are given below.

Table 14 and Table 15 show the analysis for daily IBM.

Table 14. Diff. ANN Arch. varying spread for Daily IBM using

RBN

Different NN

Architecture

x-y-1 Spread RMSE S.D.

10-y-1 2 1.18628 0.203878

10-y-1 5 1.20408 0.234053

10-y-1 8 1.10316 0.084471

10-y-1 10 1.18188 0.176929

10-y-1 15 1.02964 0.079143

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

20

Table 15. Diff. ANN Arch. varying inputs for Daily IBM using

RBN

Different Input

x-y-1 Spread RMSE S.D.

5-y-1 15 1.15466 0.104459

8-y-1 15 1.30836 0.481532

10-y-1 15 1.02964 0.0791143

15-y-1 15 1.13186 0.147249

20-y-1 15 1.23578 0.256903

Table 16 shows the most optimal structure for daily IBM data series.

Table 16. Optimum Table

x-y-1 Spread RMSE S.D.

10-y-1 15 1.02964 0.0791143

Table 17 and Table 18 show the analysis for daily S&P.

Table 17. Diff. ANN Arch. varying spread for Daily S&P using

RBN

Different NN

Architecture

x-y-1 Spread RMSE S.D.

10-y-1 2 1.66626 0.23091078

10-y-1 5 1.5653 0.25426902

10-y-1 8 2.18502 0.96924005

10-y-1 10 1.79984 0.87878396

10-y-1 15 1.99958 0.67472272

Table 18. Diff. ANN Arch. varying inputs for Daily S&P using

RBN

Different input

x-y-1 Spread RMSE S.D.

5-y-1 5 1.68234 0.23684954

8-y-1 5 1.9791 0.56714218

10-y-1 5 1.5653 0.25426902

15-y-1 5 1.81382 0.16263172

20-y-1 5 1.76686 0.19976665

Table 19 shows the most optimal structure for daily S&P data series.

Table 19. Optimum Table

x-y-1 Spread RMSE S.D.

10-y-1 5 1.5653 0.25426902

3.2.4 Generalized Regression Networks (GRNN):
Below are the tables for marking efficient artificial neural network

architecture for different data series with Generalized Regression

Networks as training algorithm. The input vector is gradually

increased due to which the rmse decreases. The most optimized input

set is taken into consideration for the network architecture. The

analysis tables for the two datasets are given below.

Table 20 shows the analysis for daily IBM.

Table 20. Diff. ANN Arch. for Daily IBM using GRNN

Different NN

architecture

x-y-1 RMSE S.D.

5-10-1 5.87704 0.13995588

8-16-1 5.85182 0.19353296

10-20-1 5.8453 0.29619885

15-30-1 5.62394 0.1269295

20-40-1 5.5722 0.10498417

Table 21 shows the most optimal structure for daily IBM data series.

Table 21. Optimum Table

x-y-1 RMSE S.D.

20-40-1 5.5722 0.10498417

Table 22 shows the analysis for daily S&P.

Table 22. Diff. ANN Arch. for Daily S&P using GRNN

Different NN

architecture

x-y-1 RMSE S.D.

5-10-1 9.98948 0.30826209

8-16-1 10.10648 0.30243149

10-20-1 9.72556 0.26012198

15-30-1 9.55536 0.48860856

20-40-1 10.3707 0.89469728

Table 23 shows the most optimal structure for daily S&P data series.

Table 23. Optimum Table

x-y-1 RMSE S.D.

15-30-1 9.55536 0.48860856

3.3 Comparison
3.3.1 Daily IBM
The most optimum ANN architecture and input parameter for

different types of ANN used is analyzed. Table XXIV shows the

comparative analysis of different ANN with respect to the Daily IBM

time series. Table 24 shows comparative analysis for daily IBM.

Table 24. Comparison Table for Daily IBM

Method Architecture Mean Standard

Deviation

BPA 10-5-1 1.98028 0.463858

LRN 8-3-1 0.90856 0.09027615

RBN 10-y-1 1.02964 0.0791143

GRNN 20-40-1 5.5722 0.10498417

3.3.2 Daily S&P
The most optimum ANN architecture and input parameter for

different types of ANN used is analyzed. Table XXV shows the

comparative analysis of different ANN with respect to the Daily IBM

time series. Table 25 shows comparative analysis for daily S&P.

Table 25. Comparison Table for Daily S&P

Method Architecture Mean Standard

Deviation

BPA 8- 20- 1 3.03788 0.629401

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

21

LRN 10-10-1 1.05518 0.09418026

RBN 10-y-1 1.5653 0.25426902

GRNN 15-30-1 9.55536 0.48860856

4. GRAPHICAL ANALYSIS

 Figure 2. Graph for actual and predicted values for Daily IBM

using BPA

Figure 3. Graph for actual and predicted values for Daily S&P

using BPA

Figure 4. Graph for actual and predicted values for Daily IBM

using LRN

Figure 5. Graph for actual and predicted values for Daily S&P

using LRN

Figure 6. Graph for actual and predicted values for Daily IBM

using RBN

Figure 7. Graph for actual and predicted values for Daily S&P

using RBN

Figure 8. Graph for actual and predicted values for Daily IBM

using GRNN

http://ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

22

Figure 9. Graph for actual and predicted values for Daily S&P

using GRNN

5. CONCLUSIONS
This paper attempts at analyzing the usefulness of artificial neural

network for forecasting financial data series with use of different

algorithms such as backpropagation, radial basis function etc. A x-y-1

network topology is adopted because of x input variables in which

variable y was determined by the number of hidden neurons during

network selection with single output." Both x and y were changed.

Following conclusions could be drawn from the empirical results and

comparison graph plotted between actual and predicted index value.

 Time series prediction probability over all datasets can be

analyzed reasonably by number of neurons as

compared to other problems.

 Increasing the number of hidden neurons first decreases

rmse and then increases it.

 Increasing number of input neurons first decreases and then

increases the rmse.

 Results may be generalizable to all the data sets.

6. REFERENCES
[1] Zhou Yixin, Jie Zhang, "Stock Data Analysis Based on BP

Neural Network," iccsn, pp.396-399, 2010 Second International

Conference on Communication Software and Networks, 2010

[2] Marzi, H.; Turnbull, M.; Marzi, E.; , "Use of neural networks in

forecasting financial market," Soft Computing in Industrial

Applications, 2008. SMCia '08. IEEE Conference on , vol., no.,

pp.240-245, 25-27 June 2008

[3] Ming Hao Eng; Yang Li; Qing-Guo Wang; Tong Heng Lee; ,

"Forecast Forex with ANN Using Fundamental Data,"

Information Management, Innovation Management and

Industrial Engineering, 2008. ICIII '08. International Conference

on , vol.1, no., pp.279-282, 19-21 Dec. 2008

[4] Fangwen Zhai; Qinghua Wen; Zehong Yang; Yixu Song; ,

"Hybrid forecasting model research on stock data mining," New

Trends in Information Science and Service Science (NISS),

2010 4th International Conference on , vol., no., pp.630-633, 11-

13 May 2010

[5] Kar, B.; Mandal, K.K.; Pal, D.; Chakraborty, N.; , "Combined

economic and emission dispatch by ANN with backprop

algorithm using variant learning rate & momentum

coefficient,"Power Engineering Conference, 2005. IPEC 2005.

The 7th International , vol., no., pp.1-235, Nov. 29 2005-Dec. 2

2005

[6] Joarder Kamruzzaman, Ruhul A. Sarker, “ANN Based

Forecasting of Foreign Currency Exchange Rates”, Neural

Information Processing - Letters and Reviews Vol.3, No. 2, May

2004, pp/49

[7] A. Kanas, “Non-linear forecasts of stock returns ,” Journal of

Forecasting, vol. 22, no.4, pp. 299–315, July 2003.

[8] R.S. Ludwig and M.J. Piovoso, “A Comparison of Machine-

Learning Classifiers For Selecting Money Managers,” Intelligent

Systems in Accounting, Finance and Management, Chichester,

vol. 13, no. 3, p. 151-164, July 2005.

[9] K. Kumar and S. Bhattacharya, “Artificial Neural Network vs

Linear Discriminant Analysis in Credit Ratings Forecast: A

Comparative Study of Prediction Performances,” Review of

Accounting and Finance, vol. 5, no. 3, 217-227, 2006.

[10] S.V. Kartalopoulos, Understanding Neural Networks and Fuzzy

Logic: Basic Concepts and Applications, Wiley IEEE Press,

New York, August 1995.

[11] R.Stein and V. Dhar, Intelligent Decision Support Methods: The

Science of Knowledge Work, Prentice Hall Business Publishing,

N.J., 1996

[12] S. Ward and M. Sherald, The Neural Network Financial

Wizards, Technical Analysis of Stocks and Commodities,

Reprinted, Technical Analyses Inc., Seattle, Washington 1995.

[13] J. A. Frankel and A. K. Rose, Empirical research on nominal

exchange rates, Handbook of International Economics (G.

Grossman and K. Rogo®, eds.), vol. 3, Amsterdam, North-

Holland, 1995, pp. 1689-1729.

[14] A. S.Weigend, M. Mangeas, and A. N. Srivastava, Nonlinear

gated experts for time series: Discovering regimes and avoiding

over¯tting, International Journal of Neural Systems 6 (1995),

373-399.

[15] N. G. Pavlidis, D. K. Tasoulis, and M. N. Vrahatis, Financial

forecasting through unsupervised clustering and evolutionary

trained neural networks, Proceedings of the Congress on

Evolutionary Computation (CEC 2003), 2003, pp. 2314-2321.

[16] N.G. Pavlidis, D.K. Tasoulis, V.P. Plagianakos, and M.N.

Vrahatis, Computational intelligence methods for financial time

series modeling, International Journal of Biffurcation and Chaos

(accepted for publication) (2005).

[17] STEVEN WALCZAK, An Empirical Analysis of Data

Requirements for Financial Forecasting with Neural Networks.

[18] Hipel and McLeod Time Series Modelling of Water Resources

and Environmental Systems, 1994, Elsevier.

[19] Makridakis, Wheelwright and HyndmanForecasting: Methods

and Applications, 3rd ed, 1998, Wiley Nelson.

[20] A. Shukla, R. Tiwari, R. Kala Real Life Application of Soft

Computing, CRC Press 2010.

http://ijcaonline.org/

