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ABSTRACT 

The contribution of this paper is to propose a novel approach of 

evaluating the performance of a noise robust audio-visual speaker 

identification system in challenging environment. Though the 

traditional HMM based audio-visual speaker identification system 

is very sensitive to the speech parameter variation, the proposed 

hybrid feature and decision fusion based audio-visual speaker 

identification is found to be stance and performs well for 

improving the robustness and naturalness of human-computer-

interaction. Linear Prediction Cepstral Coefficients and Mel 

Frequency Cepstral Coefficients are used to extract the audio 

features and Active Appearance Model and Active Shape Model 

have been used to extract the appearance and shape based features 

for the facial image.  Principal Component Analysis method has 

been used to reduce the dimensionality of large feature vector and 

to normalize, the vector normalization algorithm has been used. 

Features and decision both are fused in two different levels and 

finally four different classifier outputs are combined in parallel 

fashion to achieve the identification result. The performances of 

all these uni-modal and multi-modal system performance have 

been evaluated and compared with each other on VALID audio-

visual multi-modal database, containing both vocal and visual 

biometric modalities.  
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Hybrid Feature and Decision Fusion Based Speaker Identification, 

Human Computer Interaction, Biometrics. 
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1. INTRODUCTION 
Human speaker identification is bimodal in nature [1, 2]. Visual 

speech information can play a vital role for the improvement of 

natural and robust human-computer interaction [3, 4]. Most 

published works in the areas of speech recognition and speaker 

recognition focus on speech under the noiseless environments and 

few published works focus on speech under noisy conditions [5, 

6]. Indeed, various important human-computer components, such 

as speaker identification, verification [7], localization [8], speech 

event detection [9], speech signal separation [10], coding [11], 

video indexing and retrieval [12], and text-to-speech [13], have 

been shown to benefit from the visual channel [14]. 

 

Hybrid feature and decision fusion based audio-visual speaker 

identification system is proposed in this paper. RCC, LPCC, 

MFCC, MFCC, MFCC based audio feature extraction 

methods and for facial image, appearance and shape based feature 

extraction techniques have been applied to enhance the 

performance of the proposed scheme.   

2. HYBRID FEATURE AND DECISION 

FUSION BASED AUDIO-VISUAL SPEAKER 

IDENTIFICATION MODEL 
The block diagram for the proposed hybrid feature and decision 

fusion based audio-visual speaker identification system is shown 

in figure 1. MFCC and LPCC based audio features are extracted 

from the speech utterance and audio feature fusion is performed. 

Visual feature fusion is performed on appearance and shape based 

facial features. The audio feature fusion and visual feature fusion 

are fused again into audio-visual feature fusion method. On the 

decision fusion, audio reliability and visual reliability are 

measured according to the audio and visual HMM classifier and 

audio-visual likelihood ratio based score fusion are performed. 

Finally four separate identification output i.e. audio HMM 

classifier output, visual HMM classifier output, audio-visual 

feature fusion based classifier output and audio-visual likelihood 

ratio based score fusion are combined into parallel fashion by 

using majority vote decision fusion method to achieve the speaker 

identification result. Figure 2 shows the details working procedure 

of the proposed system. 

3. AUDIO IDENTIFICATION 
Sampling frequency of 11025 HZ, sampling resolution of 16-bits, 

mono recording channel and recorded file format of *.wav have 

been considered to capture the speech utterances. The speech 

preprocessing part has a vital role for the efficiency of learning. 

After acquisition of speech utterances, winner filter has been used 

to remove the background noise from the original speech 

utterances [15, 16]. Speech end points detection and silence part 

removal algorithm have been used to detect the presence of 

speech and to remove pulse and silences in a background noise 

[17, 18]. To detect word boundary, the frame energy is computed 

using the sort-term log energy equation [18],   
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Figure 1: Paradigm of the proposed hybrid feature and decision fusion based audio-visual speaker identification 

 

 

Figure 2: Details working procedure for the proposed hybrid feature and decision fusion based audio-visual speaker identification. 
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Where is the pre-emphasis parameter. 
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Frame blocking has been performed with an overlapping of 25% 

to 75% of the frame size. Typically a frame length of 10-30 

milliseconds has been used. The purpose of the overlapping 

analysis is that each speech sound of the input sequence would be 

approximately centered at some frame [21].  

 

From different types of windowing techniques, Hamming window 

has been used for this system. The purpose of using windowing is 

to reduce the effect of the spectral artifacts that results from the 

framing process [22, 23]. The hamming window can be defined as 

follows [23]: 
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To extract the features from the speech utterances, various types 

of standard speech feature extraction techniques [24, 25, 26] such 

as RCC, MFCC, ΔMFCC, ΔΔMFCC, LPC, LPCC have been 

applied. Principal Component Analysis method has been used to 

reduce the dimensionality of the speech feature vector. Finally, 

HMM learning and classification algorithms [27, 28] have been 

applied to classify the speakers.  

4. VISUAL IDENTIFICATION  
The first step in image pre-processing is image acquisition. To do 

so, an imaging sensor along with signal digitization capability has 

been used so that captured image can be converted to digital form 

directly. After acquisition of face image, Stams [29] Active 

Appearance Model (ASM) has been used to detect the facial 

features. Then the binary image has been taken. The Region Of 

Interest (ROI) has been chosen according to the ROI selection 

algorithm [30, 31]. Lastly the background noise has been 

eliminated [32] and finally appearance based facial feature has 

been found. The procedure of the facial image pre-processing 

parts is shown in figure 3. To reduce the dimensionality of the 

facial feature vector, PCA and HMM training and testing 

algorithm have been used to classify the facial images. 

 

 
Figure 3: Facial image pre-processing for the proposed system (a) 

Original image (b) Output taken from Stams Active Appearance 

Model (c) Facial edges are extracted (d) Shape based features (e) 

Region Of Interest (ROI) selection with background noise                  

(f) Appearance based facial features. 

 

5. AUDIO-VISUAL FEATURE FUSION 

BASED IDENTIFICATION 
The primary goal of the audio-visual feature fusion is when the 

noise level is low, the acoustic modality performs better than the 

visual one and, thus, the audio-visual identification performance 

should be at least as good as that of the acoustic speaker 

identification. When the noise level is high and the visual 

identification performance is better than the acoustic one, the 

integrated identification performance should be at least the same 

as or better than the performance of the visual-only identification 

[33]. Concatenation of two feature vectors produces result in 

feature vector with very large dimension. So, PCA has been used 

to reduce the dimension before using HMM classifier. 

6. AUDIO-VISUAL LIKELIHOOD RATIO 

BASED SCORE FUSION 
After the acoustic and visual sub-systems perform identification 

separately, their outputs are combined by a weighted sum rule to 

produce the final decision. Sensor level fusion and feature level 

fusion can be used before matching and after doing it, match score 

level, rank level and decision level fusion can be introduced. In 

this work, match score level was used to combine the audio and 

visual identification outputs.  For a given audio-visual speaker test 

datum of AO and VO , the identification utterance 
*C is given 

by [34],  
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Where 
i

A and 
i

V are the acoustic and the visual HMMs for the 

thi utterance class respectively and )/(log i

AAOP and 
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VVOP are there log likelihood against the 
thi class. 

Among various types of score fusion techniques, baseline 

reliability ratio-based integration has been used to combine the 

audio and visual identification results. The reliability of each 

modality can be measured from the outputs of the corresponding 

HMMs. When the acoustic speech is not corrupted by any noise, 

there are large differences between the acoustic HMMs output 

otherwise the differences become small. The reliability of each 

modality can be calculated by the most appropriate method which 

is best in performance [35], 
N
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Which means the average difference between the maximum log-

likelihood and the other ones and N is the number of classes being 

considered to measure the reliability of each modality, 

},{ VAm . 

Then the integrated weight of audio reliability measure A can be 

calculated by [36], 

VA

A
A

SS

S
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Where AS and VS are the reliability measure of the outputs of the 

acoustic and visual HMMs respectively.                                                                                                                   
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The integrated weight of visual modality measure can be found as, 

)1( AV                                                                          (7) 

7. MULTIPLE CLASSIFIER FUSION 
An effective way to combine multiple classifiers is required when 

a set of classifiers outputs are created. Various architectures and 

schemes have been proposed for combining multiple classifiers 

[37]. The majority vote [38, 39, 40, 41] is the most popular 

approach. Other voting schemes include the maximum, minimum, 

median [42], average [43] and product [44] schemes. Other 

approaches to combine classifiers include the rank-based methods 

such as the Borda count [45], the Bayes approach [40, 41], the 

Dempster-Shafer theory [41, 46, 47], the fuzzy integral [48], 

fuzzy connectives [49], fuzzy templates [50], probabilistic 

schemes [51], and combination by neural networks [52]. Majority 

vote approach has been used to combine four classifiers output in 

this work. The general voting routine can be defined as [53], 
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Where  is a parameter, k(d) is a function that provides additional 

voting constraints and the binary characteristics function can be 

defined as, 
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Where the output of the classifiers from the decision vector, 
T

ndddd ],....,[ 21 and },,.......,,{ 21 rcccd mi , 

ic denotes the label of the ith class and r denotes the rejection of 

assigning the input sample to any class.  

8. EXPERIMENTALS RESULTS AND 

PERFORMANCE ANALYSIS 
There are some critical parameters such as the number of frame 

length, frame increment, pre-emphasizing parameters for speech 

processing and cepstral coefficients, number of hidden states for 

HMM that affects the performance of the developed system. A 

trade off is made to explore the optimal values of the above 

parameters and experiments were performed using those 

parameters with clean speech utterances for both learning and 

identification. The optimal values of the above parameters were 

chosen and finally find out the results which are shown in the 

following subsections.  

8.1 Optimum Parameter Selection for HMM 
Various experiments have been performed for the selection of the 

optimum parameter on HMM. The highest identification of 98% 

has been achieved at the window length, NL = 15 ms, frame 

increment, N1 = 66%, pre-emphasizing parameter, α = 0.9, hidden 

states, NH = 20 and the number of cepstral coefficients, NMC =15. 

Figure 4 shows the results for various speech feature extraction 

technique i.e. MFCC, ΔMFCC, ΔΔMFCC, LPC and LPCC. 

8.2 Performance Measurements of the 

Proposed System 
VALID audio-visual database [54] has been used to measure the 

performance of the proposed speaker identification system. 

Artificial white Gaussian noise was added to the original clean 

speech utterances to simulate various SNR levels. The models 

were trained at clean speech utterances and tested under SNR 

level ranging from 0dB to 30dB at 5dB intervals. Table 1 shows 

the experimental results according to the VALID audio-visual 

database. Performance comparison among audio only, visual only, 

audio-visual feature fusion, audio-visual likelihood ratio based 

score fusion and combined classifiers i.e. majority vote output of 

the proposed system are shown in figure 5. 

 

 
Figure 4: Speaker identification accuracy according to the number of cepstral coefficients. 
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Table 1. Performance measurements among Audio only, Visual only, AV feature fusion, AV score fusion and 

Majority vote approach according to various SNRs 

SNR Audio only (%) Visual only (%) 
AV feature 

fusion (%) 

AV score fusion 

(%) 

Majority Vote 

(%) 

0 5.00 82.00 6.67 7.23 9.33 

5 10.67 82.00 13.33 16.33 19.67 

10 21.27 82.00 22.89 26.29 30.00 

15 35.33 82.00 40.00 44.23 46.26 

20 50.56 82.00 50.87 52.33 55.67 

25 70.13 82.00 71.23 77.67 80.33 

30 93.33 82.00 94.00 95.33 97.67 

Average (%) 

(0dB ~ 30dB) 
40.90 82.00 42.71 45.63 48.42 

 

 

Figure 5: Performance comparison among audio only, visual only, audio-visual feature fusion, audio-visual likelihood ratio based score 

fusion and combined classifiers i.e. majority vote output of the proposed system. 

 

The following observations have been accounted from the 

performance analysis of the proposed system. 

 

 For visual only system the identification rate was found 

to be (82%) which remains constant regardless of 

acoustic SNR conditions. These values are larger than 

the acoustic only identification for noisy speech but 

smaller than for clean speech. 

 

 The acoustic only identification rate degrades 93.33% to 

5.00% with more artificially added white Gaussian 

noise.  

 

 The average identification rate was found to be 

(42.71%) with AV feature fusion, (40.90%) with audio 

only and (45.63%) with AV score fusion.  

 

 The majority vote approach (i.e. combined result of 

Audio only, Visual only, AV feature fusion and AV 

score fusion) achieves higher score than any other single 

and multimodal system. 

9. CONCLUSIONS 
We have proposed a novel architecture of introducing hybrid 

feature fusion and hybrid decision fusion for Audio-visual speaker 

identification system. This approach is general and is able to 

minimize the false rejection rate at a false acceptance rate. 

Experimental results according to the VALID database shows that 

the proposed hybrid feature and decision fusion based Audio-

visual strategy achieves the best accuracies of speaker 

identification at all levels of acoustic signal-to-noise ratio, ranging 

from 0dB to 30dB. The identification rate of this system reveals 

that this proposed system can be used in various securities and 

access control purposes. The performance can also be populated 

according to large Audio-visual database. 
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