Abstract

In this paper, various multiple input and multiple output (MIMO) detection techniques have been compared on the basis of BER performance and complexity. Maximum likelyhood (ML) detection method has shown optimal solution in MIMO systems compared to conventional detection techniques. However, higher receiver complexity leads to use of lower complexity techniques such as zero forcing (ZF) and minimum mean square error (MMSE) having relatively poor performance. Successive interference cancellation combined with ZF or MMSE has much improved performance but vulnerable to error propagation. Ordered successive interference cancellation with MMSE (MMSE-OSIC) has reduced error propagation probability and gave the better performance. A new detection technique sphere detection (SD) based on Schnorr-Euchner enumeration has provided ML solution with much less computational complexity. For simulation, Rayleigh channel model has been considered.
Sphere Detection Technique: An Optimum Detection Scheme for MIMO System

- T. M. Duman and A. Ghrayeb, "Coding for MIMO communication systems", John Wiley and Sons Inc., 2007
- B. Holter, "On the capacity of the MIMO channel- A tutorial introduction", Norwegian University of Science and Technology, 2002
- D. Wibben, R. Bohnke, V. Kuhn and K. D. Kammeyer, "Near-Maximum Likelihood detection of MIMO systems using MMSE-Based Lattice-Reduction", University of Bremen, 2004
- G. Birlew, "Performance evaluation of a layered space-time structure for MIMO systems", Addis Ababa University, July 2011

Index Terms

Computer Science
Communications

Keywords

Multiple Input and Multiple Output (MIMO) System Zero Forcing (ZF) Minimum Mean Square Error (MMSE)
Successive Interference Cancellation (SIC)

Maximum Likelihood (ML)

Sphere Decoder