CFP last date
20 May 2024
Reseach Article

Autonomous Underwater Vehicle to Inspect Hydroelectric Dams

by Edson Cavalcanti Neto, Rejane M. Cavalcante, Antonio T. Varela, andr´e L. C. Ara´ujo, Italo J. Loiola, Rog´erio Oliveira, Auzuir R. De Alexandria, Victor Hugo C. De Albuquerque
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Number 11
Year of Publication: 2014
Authors: Edson Cavalcanti Neto, Rejane M. Cavalcante, Antonio T. Varela, andr´e L. C. Ara´ujo, Italo J. Loiola, Rog´erio Oliveira, Auzuir R. De Alexandria, Victor Hugo C. De Albuquerque
10.5120/17728-8801

Edson Cavalcanti Neto, Rejane M. Cavalcante, Antonio T. Varela, andr´e L. C. Ara´ujo, Italo J. Loiola, Rog´erio Oliveira, Auzuir R. De Alexandria, Victor Hugo C. De Albuquerque . Autonomous Underwater Vehicle to Inspect Hydroelectric Dams. International Journal of Computer Applications. 101, 11 ( September 2014), 1-11. DOI=10.5120/17728-8801

@article{ 10.5120/17728-8801,
author = { Edson Cavalcanti Neto, Rejane M. Cavalcante, Antonio T. Varela, andr´e L. C. Ara´ujo, Italo J. Loiola, Rog´erio Oliveira, Auzuir R. De Alexandria, Victor Hugo C. De Albuquerque },
title = { Autonomous Underwater Vehicle to Inspect Hydroelectric Dams },
journal = { International Journal of Computer Applications },
issue_date = { September 2014 },
volume = { 101 },
number = { 11 },
month = { September },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume101/number11/17728-8801/ },
doi = { 10.5120/17728-8801 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:31:22.360028+05:30
%A Edson Cavalcanti Neto
%A Rejane M. Cavalcante
%A Antonio T. Varela
%A andr´e L. C. Ara´ujo
%A Italo J. Loiola
%A Rog´erio Oliveira
%A Auzuir R. De Alexandria
%A Victor Hugo C. De Albuquerque
%T Autonomous Underwater Vehicle to Inspect Hydroelectric Dams
%J International Journal of Computer Applications
%@ 0975-8887
%V 101
%N 11
%P 1-11
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Driven by the rising demand for underwater operations in the fields of dam structure monitoring, ecosystems of reservoir lakes from Hydropower Plants (HPP) and mining and oil, underwater robotics is increasing rapidly. The increase in exploration, prospecting, monitoring and security in lakes, rivers and sea, both in commercial applications such as scientific applications, has led large companies and research centers to invest in the development of underwater vehicles. The purpose of this work is to develop and evaluate the performance of a dedicated expert system for an Autonomous Underwater Vehicle (AUV) to inspect hydroelectric dams, focusing efforts on mechatronic project based on dimensioning structural elements and machinery and elaborating the sensory part, which includes navigation sensors and sensors of environment conditions, as well as its vision system to detect and measure cracks on hydroelectric dams. The integration of sensors in an intelligent platform provides a satisfactory control of the vehicle, allowing the movement of the submarine on the three spatial axes. Because of the satisfactory fast response of the sensors, it is possible to determine the acceleration and inclination besides his attitude in relation to the trajectory instantaneously taken, and geometry and depth of the cracks. This vehicle will be able to monitor the physical integrity of dams, making acquisition and storage of environment parameter such as temperature, dissolved oxygen, pH and conductivity as well as document images of the biota from reservoir lakes HPP, with minimized cost, high availability and low dependence on a skilled workforce to operate it.

References
  1. P Angeli, Carla M Prado, D´ebora G Xisto, Pedro L Silva, Caroline P P´assaro, Hugo D Nakazato, Edna A Leick- Maldonado, Milton A Martins, Patricia R M Rocco, and Iolanda F L C Tib´erio. Effects of chronic l-name treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 294:197–205, 2008.
  2. G. Antonelli, S. Chiaverini, N. Sarkar, and M. West. Adaptive control of an autonomous underwater vehicle: experimental results on odin. Control Systems Technology, IEEE Transactions on, 9(5):756–765, Sep 2001.
  3. E. A. Barros and F. J. A. Soares. Desenvolvimento de um robˆo submarino de baixo custo. In XIV Congresso Brasileiro de Autom´atica, 2002.
  4. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. Computer. Vision and Image Understanding, 110(3):346–359, 2008.
  5. G. Benet, F. Blanes, J. E. Sim, and P. Prez. Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous Systems, 40(4):255 – 266, 2002.
  6. C. Benton, J. Kenney, R. Nitzel, D. R. Blidberg, S. Chappell, and S. Mupparapu. Autonomous undersea systems network (ausnet) - protocols to support ad-hoc auv communications. In Autonomous Underwater Vehicles, 2004 IEEE/OES, pages 83–87, June 2004.
  7. Mogens Blanke, Karl-Petter Lindegaard, and Thor I. Fossen. Dynamic model for thrust generation of marine propellers, 2000.
  8. J. H. R. Borenstein. Navigation Mobile Robots: Systems and Techniques. AK Peters, 1996.
  9. G. Conte and A Serrani. Modelling and simulation of underwater vehicles. In Computer-Aided Control System Design, 1996. , Proceedings of the 1996 IEEE International Symposium on, pages 62–67, Sep 1996.
  10. J. P. V. S. Cunha. Projeto e estudo de simulac¸ ˜ao de um sistema de controle a estrutura vari´avel de um ve´?culo submarino de operac¸ ˜ao remota. Master's thesis, Federal University of Rio de Janeiro, 1992.
  11. R. B. Dominguez. Simulac¸ ˜ao e controle de um ve´?culo submarino de operac¸ ˜ao remota. Master's thesis, Federal University of Rio de Janeiro, 1989.
  12. C. Benton. M. M. Haag, R. Nitzel, D. R. Blidberg, S. G. Chappell, and S. Mupparapu. Advancements within the ausnet protocol. In In Fourteenth International Symposium on Unmanned Untethered Submersible Technology, 2006.
  13. L. Hsu, J. P. V. S. Cunha, F. Lizarralde, and R. R. Costa. Avaliac¸ ˜ao experimental e simulac¸ ˜ao da dinˆamica de um ve´?culo submarino de operac¸ ˜ao remota. Controle & Automac¸ ˜ao, 11(2):82–93, 2000.
  14. D. P. Miller. Design of a small, cheap uuv for under-ship inspection and salvage. In Autonomous Underwater Vehicle Technology, 1996. AUV '96. , Proceedings of the 1996 Symposium on, pages 18–20, Jun 1996.
  15. S. Mupparapu, R. Bartos, and M. M. Haag. Performance evaluation of ad hoc protocols for underwater networks. In Fourteenth International Symposium on Unmanned Untethered Submersible Technology, 2005.
  16. P. Ridao, J. Batlle, and M. Carreras. Dynamic model of an underwater robotic vehicle. Technical report, University of Girona, 2001.
  17. F. Schweiger, B. Zeisl, P. Georgel, G. Schroth, E. Steinbach, and N. Navab. Maximum detector response markers for sift and surf. In Vision, Modeling and Visualization Workshop, 2009.
  18. E. Souza and N. Maruyama. An investigation of dynamic positioning strategies for unmanned underwater vehicles. In XIV Congresso Brasileiro de Autom´atica, 2002.
  19. J. Yuh. Design and control of autonomous underwater robots: a survey. International Journal of Autonomous Robots, 1(3):1, 14 2000.
Index Terms

Computer Science
Information Sciences

Keywords

Autonomous Underwater Vehicle Computational Vision Dams Underwater Robotics