CFP last date
20 June 2024
Reseach Article

A Numerical Approach to solve Three-Parameter Matrix Eigenvalue Problems by Kronecker Product Method

by Niranjan Bora, Arun Kumar Baruah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 103 - Number 3
Year of Publication: 2014
Authors: Niranjan Bora, Arun Kumar Baruah
10.5120/18058-8988

Niranjan Bora, Arun Kumar Baruah . A Numerical Approach to solve Three-Parameter Matrix Eigenvalue Problems by Kronecker Product Method. International Journal of Computer Applications. 103, 3 ( October 2014), 56-61. DOI=10.5120/18058-8988

@article{ 10.5120/18058-8988,
author = { Niranjan Bora, Arun Kumar Baruah },
title = { A Numerical Approach to solve Three-Parameter Matrix Eigenvalue Problems by Kronecker Product Method },
journal = { International Journal of Computer Applications },
issue_date = { October 2014 },
volume = { 103 },
number = { 3 },
month = { October },
year = { 2014 },
issn = { 0975-8887 },
pages = { 56-61 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume103/number3/18058-8988/ },
doi = { 10.5120/18058-8988 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:33:38.401023+05:30
%A Niranjan Bora
%A Arun Kumar Baruah
%T A Numerical Approach to solve Three-Parameter Matrix Eigenvalue Problems by Kronecker Product Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 103
%N 3
%P 56-61
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this work it is intended to discuss three-parameter matrix eigenvalue problems and its numerical aspects. The problem is reduced into its corresponding one-parameter problems in tensor product space. Then applying kronecker product method eigenvalue and eigenvectors have been estimated. A numerical example is also presented in this paper.

References
  1. Atkinson, F. V. , 1972. "Multiparameter Eigenvalue Problems", Vol. I, (Matrices and Compact Operators) Academic Press,New York.
  2. Hua Daia, 2007. "Numerical methods for solving multiparameter eigenvalue problems," International Journal of Computer Mathematics, 72:3, 331-347.
  3. Sleeman, B. D. , 1978, "Multiparameter Spectral Theory in Hilbert Space," Pitman Press, London.
  4. Volkmer, H. , 1988, "Multiparameter Problems and Expansion Theorems," Lecture Notes in Math. 1356, Springer-Verlag, New York.
  5. Roach, G. F. , "A classification and reduction of general Multiparameter problems," Technical report, Georg-August-Universität Göttingen
  6. Collatz, L. , 1968. "Multiparameter eigenvalue problems in inner product spaces", J. Compu. and Syst. Scie. , 2, 333-341.
  7. Atkinson, F. V. , and Mingarelli, A. B. , 2010. "Multiparameter Eigenvalue Problems: Sturm-Liouville Theory", CRC Press.
  8. Browne, P. J. , 1972. "A multiparameter eigenvalue problem," Journal of mathematical Analysis and Applications 38, 553-568.
  9. Kallstrom, A. , and Sleeman, B. D. , 1977. "Multiparameter Spectral Theory," Ark. Mat. 15, 93-99.
  10. Bohte. Z. , 1982. "Numerical solution of some two-parameter eigenvalue problems", Slov. Acad. Sci. Art. , 17–28.
  11. Müller, R. E. , 1982. "Numerical solution of multiparameter eigenvalue problems",Z. Angew. Math. Mech. , 62, 681–686.
  12. Chang, A. F. , Blum, E. K. , 1978. "A numerical method for the solution of the double eigenvalue problem", J. Inst. Math. appl. 22, 29-42.
  13. Ji, X. R. , Jiang, H. , and Lee, B. H. K. "A Generalized Rayleigh Quotient Iteration for Coupled Eigenvalue Problems", manuscript.
  14. Binding, P. and Browne, P. J. , 1981. "Spectral properties of two parameter problems". Proc. Roy. Soc. Of Edinburgh 89A, 157-173.
  15. Browne, P. J. , and Sleeman, B. D. , 1982. "A numerical technique for multiparameter eigenvalue problems," IMA J. of Num. Anal. 2, 451-457.
  16. Curtis, A. R. , and Blum, E. K. , 1978. "A convergent Gradient method for matrix eigenvector-eigentuple problems", Numer. Math. , 31, 247-263.
  17. Geltner, P. B. , and Blum, E. K. , 1978. "Numerical solution of eigentuple-eigenvector problems in Hilbert spaces by a gradient method", Numer. Math. , 31, 231 -246.
  18. Rodrigue, G. H. , and Blum, E. K. , 1974. "Solution of eigenvalue problems in Hilbert spaces by a gradient method". J. Comput. System Sci. 2, 220-237.
  19. Baruah, A. K. , 1987. "Estimation of eigenelements in a two-parameter eigenvalue problem," Ph. D thesis, Dibrugarh University.
  20. Baruah, A. K. and Konwar, J. , 2001, "A Numerical Technique to a Two-Parameter Eigenvalue Problem", was published in the Proceedings of the 46th International Congress of ISTAM held at Regional Engineering College, Hamirpur, H. P. during, 132-139.
  21. Slivnik, T. and Tomsit, G. , 1984. "A numerical method for the solution of two-parameter eigenvalue problems," Institute of Mathematics, Physics, and Mechanics, E. K. University of Ljubljana, 61000 Ljubljana, Yugoslavia.
Index Terms

Computer Science
Information Sciences

Keywords

Multiparameter eigenvalue problems tensor product space kronecker product.