Abstract

In present era people depend on both hardware and software system. As software system is engrafted in every aspect of computer system, the desired quality of software is an essential concern for many critical system. From last few decades, many software reliability growth models were developed to analyze the growth of reliability. For improving the quality of software, SRGM plays an essential role. The present study proposed a Software Reliability Growth Model with testing effort and dynamic fault. The parameters involved in the proposed model are estimated using least square estimation. The performance of the proposed model is validated using Mean Square Error (MSE), Akaike Information Criterion (AIC) and R Squared Error (R2). A proposed Model is compared with existing models reported in literature, and it has been observed that proposed model performed better.

References

- Goel and Okumoto, 1979 "Time dependent error-detection rate model for software
- Huang, Kuo and Lyu, 1999; Optimal software release policy based on cost and reliability with testing efficiency, 23rd International Conference on Computer Software and Applications, pp. 468–473
- Huang, 2005; Performance analysis of software reliability growth models with testing-effort and change-point, J. Syst. Softw. pp. 181–194
- Huang, 2005; Cost-reliability-optimal release policy for software reliability models incorporating improvements in testing efficiency, "J. Syst. Softw. pp. 139–155
- Kapur, Goswami, and Gupta, 2004; A Software reliability growth model with testing effort dependent learning function for distributed systems, " Int. J. of Reliab., Qual. , Safety Eng. pp. 365–377
- Pachauri, Kumar and Dhar, 2014; Software reliability growth model with dynamic faults and optimal release time optimization using GA and MAUNT, " Applied Math. and comput. pp. 500–509
- Quadri, Ahmad, Peer and Kumar, 2006; Non-homogeneous Poisson process software reliability growth model with generalized exponential testing effort function, RAU J. Res. pp. 159–163
- Ahmad, Bokhari, Quadri, and Khan, 2008; The exponentiated Weibull software reliability growth model with various testing-efforts and optimal release policy, Int. J. Qual. Reliab. Manag. pp. 211–235
- Ahmad, Khan, Quadri and Kumar, 2009; Modeling and analysis of software reliability with Burr type-X testing-effort and release-time determination, " J. Model. Manag. pp. 28–54
- Rafi and Akhtar, 2010; Software reliability growth model with Gompertz TEF and optimal

- Brooks and Motley, 1980, Analysis of discrete software reliability models, RADC-TR, 80-84

Index Terms

Computer Science
Software Engineering

Keywords

Software Reliability
Software Reliability Growth Models
Test effort
Fault