Abstract

Speed improvement in Digital signal processing is considered to be challenging. High speed multipliers and adders are prime requirement for digital filters and for FFT operations. Vedic mathematics is an ancient scheme based on 16 formulas (sutras). These are simple and easy methods which can be directly applied for DSP computations. Many researchers have worked on multiplier designs using Vedic operators. Present paper deals with exhaustive review of literature based on Vedic mathematics. It shows that Vedic mathematics can be used for fast signal processing. Multipliers based on Vedic mathematics can be used for speed improvement, reduction in power consumption, complexity, area etc. Vedic mathematical algorithms can be proved efficient over traditional (existing) methods in FIR and IIR filters for providing effective results in de-noising of biomedical Signal.

References

- S. M. Khairnar, Sheetal Kapade, Naresh Ghorpade 2012 "Vedic mathematics- The cosmic software for implementation of fast algorithms", IJCSA-2012.
- Manorajan Pradhan, Rutuparna Panda, Sushant Kumar Sahu 2011, "Speed
comparison of 16 X 16 vedic multipliers"; International journal of computer applications, Vol. 21, No. 6, May 2011
 - Aniruddha Kanhe, Shishir Kumar Das, Ankit Kumar Singh, 2012 "Design and implementation of low power multiplier using vedic multiplication technique"; International Journal of computer science and communication techniques, Vol. 3 No. 1 Jan-June 2012, 131-132
 - Sumit Vaidya, D. R,Dandekar, "Performance comparison of multipliers for power speed trade off in VLSI design"; Proceeding ICNVS'10 Proceedings of the 12th international conference on Networking, VLSI and signal processing Pages 262-266.
Vedic Mathematics for Digital Signal Processing Operations: A Review

1, December 2011.

- Anvesh Kumar, Ashish Raman 2010, "Low Power ALU Design by Ancient Mathematics", vol 5, 862-865, 2010
- Harpreet Singh Dhillon, Abhijit Mitra, "A Digital Multiplier Architecture using Urdhva Tiryakbyam Sutra of Vedic Mathematics" www.academia.edu
- Rana Mukharhi, Amit Kumar Chatterjee, Manishita Das 2011, "Implementation of an efficient multiplier architecture based on ancient indian vedic mathematics using System
Vedic Mathematics for Digital Signal Processing Operations: A Review

- Chi-Jui Chou, Satish Mohanakrishnan, Joseph B. Evans, FPGA implementation of digital filters; Proc. ICSPAT '93.
- Shahnam Mirzaei, Anup Hosangadi, Ryan Kastner, 2006 FPGA Implementation of High Speed FIR Filters Using Add and Shift Method; IEEE 2006
- Macpherson, K. N, Rapid prototyping area efficient FIR filters for high speed FPGA implementation; Vision image and signal processing IEEE proceedings, volume 153, issue: 6, 711 – 720.
- Lorca, F. G. Kessal, Dimigni 1997, Efficient ASIC and FPGA implementations of

Index Terms

Computer Science Signal Processing

Keywords

Vedic Mathematics Multiplier DSP Filter Design