CFP last date
20 June 2024
Reseach Article

Automatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique

by Moheb R. Girgis, Ahmed S. Ghiduk, Eman H. Abd-elkawy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 116 - Number 22
Year of Publication: 2015
Authors: Moheb R. Girgis, Ahmed S. Ghiduk, Eman H. Abd-elkawy
10.5120/20469-2324

Moheb R. Girgis, Ahmed S. Ghiduk, Eman H. Abd-elkawy . Automatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique. International Journal of Computer Applications. 116, 22 ( April 2015), 25-33. DOI=10.5120/20469-2324

@article{ 10.5120/20469-2324,
author = { Moheb R. Girgis, Ahmed S. Ghiduk, Eman H. Abd-elkawy },
title = { Automatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique },
journal = { International Journal of Computer Applications },
issue_date = { April 2015 },
volume = { 116 },
number = { 22 },
month = { April },
year = { 2015 },
issn = { 0975-8887 },
pages = { 25-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume116/number22/20469-2324/ },
doi = { 10.5120/20469-2324 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:57:52.236477+05:30
%A Moheb R. Girgis
%A Ahmed S. Ghiduk
%A Eman H. Abd-elkawy
%T Automatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 116
%N 22
%P 25-33
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Path testing requires generating all paths through the program to be tested, and finding a set of program inputs that will execute every path. The number of possible paths in programs containing loops is infinite, and so it is very difficult, if not impossible, to test all of them. Path testing can be relaxed by selecting a subset of all executable paths that fulfill a certain path selection criterion and finding test data to cover it. The automatic generation of such test paths leads to more test coverage paths thus resulting in efficient and effective testing strategy. This paper presents a genetical swarm optimization (GSO) based technique, which effectively combines a genetic algorithm (GA) based technique and a particle swarm optimization (PSO) based technique, for automatic generation of a set of test paths that cover the all-uses criterion. Experiments have been carried out to evaluate the effectiveness of the proposed GSO approach in test paths generation compared to the GA and PSO approaches.

References
  1. Bertolino, A. , Marre, M. 1994. Automatic Generation of Path Covers Based on the Control flow analysis of computer Programs. IEEE Transaction on Software on software Engineering, Vol. 20, No. 12, pp. 885-899.
  2. McCabe, T. and Thomas, J. 1982. Structural Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric, NIST Special Publication 500-99, Washington D. C.
  3. Poole, J. 2004. A Method to Determine a Basis Set of Paths to Perform Program Testing. http://hissa. nist. gov// publications/nistir5737.
  4. Guangmei, Z. , Rui, C. , Xiaowei, L. , and Congying H. 2005. The Automatic Generation of Basis Set of Path for Path Testing. 14th Asian Test Symposium (ATS '05).
  5. Yan, J. and Zhang J. 2008. An efficient method to generate feasible paths for basis path testing. Information Processing Letters, Vol. 107, No. 3-4, pp. 87-92.
  6. Zhonglin, Z. and Lingxia, M. 2010. An Improved Method of Acquiring Basis Path for Software Testing. 5th International Conference on Computer Science & Education, pp. 1891-1894, China.
  7. Qingfeng, D. and Xiao D. 2011. An Improved Algorithm for Basis Path Testing. International Conference on Business Management and Electronic Information (BMEI), pp. 175 – 178.
  8. Pei, M. , Goodman, E. D. , Gao, Z. and Zhong, K. 1994. Automated Software Test Data Generation Using A Genetic Algorithm. Technical Report GARAGe of Michigan State University.
  9. Roper, M. , Maclean, I. , Brooks, A. , Miller, J. and Wood, M. 1995. Genetic Algorithms and the Automatic Generation of Test Data. Technical Report RR/95/195 [EFoCS-19-95], University of Strathclyde, Glasgow G1 1XH, U. K.
  10. Watkins, A. E. L. 1995. A Tool for the Automatic Generation of Test Data Using Genetic Algorithms. Proceedings of Software Quality Conference, Dundee, Scotland.
  11. Jones, B. F. Eyres, D. E. and Sthamer, H. -H. 1998. A strategy for using genetic algorithms to automate branch and fault-based testing. The Computer Journal, Vol. 41, No. 2, pp. 98-107.
  12. Pargas, R. P. , Harrold, M. J. , and Peck, R. R. 1999. Test-Data Generation Using Genetic Algorithms. The Journal of Software Testing, Verification and Reliability.
  13. Lin J. -C. and Yeh, P. -L. 2001. Automatic test data generation for path testing using GAs. Information Sciences, Vol. 131, No. 1-4, pp. 47-64.
  14. Michael, C. C. , McGraw, G. and Schatz, M. A. 2001. Generating Software Test Data by Evolution. IEEE Transactions on Software Engineering, Vol. 27, No. 12, pp. 1085-1110.
  15. Bueno P. M. S. and Jino, M. 2002. Automatic Test Data Generation For Program Paths Using Genetic Algorithms. International Journal of Software Engineering and Knowledge Engineering, Vol. 12, No. 6, pp. 691-709.
  16. Girgis, M. R. 2005. Automatic test data generation for data flow testing using a genetic algorithm. Journal of Universal computer Science, Vol. 11, No. 5, pp. 898-915.
  17. Ghiduk, A. S. , Harrold, M. J. , Girgis, M. R. 2007. Using genetic algorithms to aid test-data generation for data flow coverage. 14th Asia-Pacific Software Engineering Conference (APSEC 07), pp. 41-48. IEEE Press.
  18. Gong, D. W. , Zhang, W. Q. and Yao, X. J. 2011. Evolutionary Generation of Test Data for Many Paths Coverage Based on Grouping. Journal of Systems and Software, Vol. 84, No. 12, pp. 2222–2233.
  19. Girgis, M. R. , Ghiduk, A. S. and Abd-Elkawy, E. H. 2013. An Approach For Enhancing Regression Testing Using Genetic Algorithm and Data Flow Analysis, International Journal of Intelligent Computing and Information Science, Vol. 13, No. 2, pp. 115-132.
  20. Hermadi, I. , Lokan, C. and Sarker, R. 2010. Genetic Algorithm Based Path Testing: Challenges and Key Parameters. Second WRI World Congress on Software Engineering.
  21. Bint, J. R. and Site, R. 2004. Optimizing Testing Efficiency with Error Prone Path Identification and Genetic Algorithms. Australian Software Engineering Conference (ASWEC'04), Australia, pp. 106-115.
  22. Ghiduk, A. S. , Said, O. and Aljahdali, S. 2012. Basis Test Paths Generation Using Genetic Algorithm. The 1st Taibah University International Conference on Computing and Information Technology (ICCIT 2012), pp. 303-308.
  23. Kennedy, J. and Eberhart, R. C. 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks, pp. 1942-1948.
  24. Li, A. G. , Zhang, Y. L. 2008. Automatic generation method of test data for software structure based on PSO. Computer Engineering, Vol. 34, No. 6, pp. 93-97.
  25. Bueno, P. M. S. , Wong, W. E. and Jino, M. 2008. Automatic test data generation using particle systems. ACM Symposium of Applied Computing pp. 809-814, Fortaleza, Brazil.
  26. Li, A. and Zhang, Y. 2009. Automatic generating all-path test data of a program based on PSO. The 2009 WRI World Congress on Software Engineering (WCSE'09), IEEE, Los Alamitos, Vol. 4, pp. 189-193.
  27. Agrawal, K. and Srivastava, G. 2010. Towards software test data generation using discrete quantum particle swarm optimization. ISEC, Mysore, India, pp. 65- 68.
  28. Narmada, N. and Mohapatra, D. P. 2010. Automatic Test Data Generation for data flow testing using Particle Swarm Optimization. Communications in Computer and Information Science, Vol. 95, No. 1, pp. 1-12.
  29. Nie, P. , Geng, J. and Qin, Z. G. 2012. Multi-path oriented particle swarm optimization automatic test case generation algorithm. Computer Integrated Manufacturing Systems, Vol. 18, No. 1, pp. 216-223.
  30. Gandelli, A. , Grimaccia, F. , Mussetta, M. , Pirinoli, P. and Zich, R. E. 2007. Development and Validation of Different Hybridization Strategies between GA and PSO. IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2782-2787.
  31. Rapps S. and Weyuker, E. J. 1985. Selecting software test data using data flow information. IEEE Transactions on Software Engineering, Vol. 11, No. 4, pp. 367-375.
  32. Girgis, M. R. 1993. Using symbolic execution and data flow criteria to aid test data selection. The Journal of Software Testing, Verification and Reliability, Vol. 3, No. 2, pp. 101-112.
  33. Girgis, M. R. Ghiduk, A. S. Abd-Elkawy, E. H. 2014. Automatic Generation of Data Flow Test Paths using a Genetic Algorithm. International Journal of Computer Applications (0975 – 8887), Vol. 89, No. 12, pp. 29-36.
  34. Girgis, M. R. 1992. An experimental evaluation of a symbolic execution system. Software Engineering Journal, Vol. 7, No. 4, pp. 285-290.
  35. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Mass.
  36. Eberhart, R. C. , Shi, Y. 2000. Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of 2000 Congress on Evolutionary Computation, San Diego, CA, pp. 84–88.
  37. Clerc, M. 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. 1999 Congress on Evolutionary Computation, Washington, DC, pp. 1951-1957. Piscataway, NJ, IEEE Service Center.
Index Terms

Computer Science
Information Sciences

Keywords

Software testing Automatic test path generation Data flow testing Genetic Algorithms Particle Swarm Optimization Genetical Swarm Optimization