Abstract

Vehicular ad hoc network (VANETs) being a sub class of MANET is a challenging field of wireless communication. It is a sensible way of using infrastructure fewer networks augmented with Intelligent Transportation System (ITS). It is an emerging trend now days for vehicles to be equipped with an embedded on-board computing unit with communication capabilities to enhance the overall driving experience. Such a system enables vehicle to vehicle and vehicle-to-infrastructure communication and provides vehicles with up-to-date route and traffic information. Due to its highly dynamic topology as well as occurring often disconnection among vehicles, various categories of protocols have designed for its efficient and reliable working. While driving, a large amount of data and information are accessible to everyone. Many attractive applications over vehicular ad hoc network (VANETs) need data to be transmitted to the remote destinations through multiple paths, but some unique characteristics of VANETs incur unstable data delivery performances. Efficient data dissemination to a desired number of receivers in a vehicular ad hoc network (VANET) is a new issue and a challenging one considering the dynamic nature of VANETs. This paper presents an overview on simple and robust dissemination technique that efficiently deals with data dissemination in both dense and sparse vehicular networks. This technique divides the users in two categories and it takes three cases.
References

- Nathan Balon, Introduction to Vehicular Ad Hoc Networks and the Broadcast Storm Problem
- J. Zhao, Y. Zhang and G. Yeng; data pouring and buffering on Road: a new data dissemination paradigm for vehicular ad hoc network; IEEE transaction on vehicle technology, vol. 56, 2007
- Pratibha Tomar, G. S tomar; state of art of data dissemination in VANETs; international journal of computer theory and engineering, vol 2, no. 6 December, 2010 1793-8201.
- O. tongue, N. Wisitponghphan; a distributed vehicular broadcast for VANET, IEEE wireless communication in 2010
- Q. Wang, F. Pingyi, K. B. Letaief, On the joint V2I and V2V scheduling for cooperative VANETs with network coding, IEEE Transactions on Vehicular Technology61 (January


Index Terms

Computer Science

Networks

Keywords

Data Dissemination techniques ASSD