Abstract

This paper deals with the velocity estimation of a moving target by using bistatic radar. The illuminating signal used is an FM-Radio Broadcast signal. The main problems associated with bistatic radars are the noise and DPI (Direct Path interference). The estimation is achieved by reducing noise and direct path interference using adaptive filtering technique. The performance is computed by using simulations.

References

- Nicholas J. Willis & Hugh Griffiths, Klein Heidelberg – a WW2 bistatic radar system
- M A Ringer, G J Frazer and S J Anderson (1999), Waveform Analysis of Transmitters of
- Hanis Ramli, Hambaly Abdullah, Latifah Mat Nen, Shahmi Shokri, Zulhelmi Iskandar, Noise Sensitivity of AM vs FM
- Joe J. Johnson, Implementing The Cross Ambiguity Function And Generating Geometry-Specific Signals, 2001

Index Terms

Computer Science

Signal Processing
Keywords

Least Mean Square (LMS) Cross Ambiguity Function (CAF) noise cancellation
Direct Path interference Cancellation (DPI)
Doppler.