Notification: Our email services are now fully restored after a brief, temporary outage caused by a denial-of-service (DoS) attack. If you sent an email on Dec 6 and haven't received a response, please resend your email.
CFP last date
20 December 2024
Reseach Article

Design a 90 Degree Splitter WDM using Plasmonic Technique

by Mohammed Nadhim Abbas, Ahmed Abdulredha Ali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Number 9
Year of Publication: 2015
Authors: Mohammed Nadhim Abbas, Ahmed Abdulredha Ali
10.5120/ijca2015905989

Mohammed Nadhim Abbas, Ahmed Abdulredha Ali . Design a 90 Degree Splitter WDM using Plasmonic Technique. International Journal of Computer Applications. 125, 9 ( September 2015), 41-44. DOI=10.5120/ijca2015905989

@article{ 10.5120/ijca2015905989,
author = { Mohammed Nadhim Abbas, Ahmed Abdulredha Ali },
title = { Design a 90 Degree Splitter WDM using Plasmonic Technique },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 125 },
number = { 9 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 41-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume125/number9/22463-2015905989/ },
doi = { 10.5120/ijca2015905989 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:15:37.230466+05:30
%A Mohammed Nadhim Abbas
%A Ahmed Abdulredha Ali
%T Design a 90 Degree Splitter WDM using Plasmonic Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 125
%N 9
%P 41-44
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The two channels of plasmonic filter structure are selective based, on a nanocavity, that proposed, and numerically simulated, by using the finite, element method by using COMSOL4.4 software package The required, filtered wavelength can, be investigated, by selecting, an appropriate length of, the nanocavity and refractive index of dielectric that filled nanocavity. Two, output channels, structure based, on two perpendicular, nanocavities that, proposed to, design a subwavelength, plasmonic splitter, and demultiplexer operating, around 770 nm and 900 nm with the maximum transmittance of the two bands is 79% for channel1 and 84% for channel2.Three materials used to build structure ,metal used as a silver and two types of dielectric quartz with refractive index 1.5 and erbium with refractive index 1.45."

References
  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
  3. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  4. Hua Lu, Xueming Liu,* Yongkang Gong, Dong Mao, and Leiran Wang "Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities" July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS 12885
  5. T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,”Opt. Exp., vol. 13, pp. 9652–9659, 2005.
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett, vol. 87, p. 131102, 2005.
  7. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal- dielectric-metal plasmonic waveguides,” Appl. Phys. Lett, vol. 92, p. 041117, 2008.
  8. C. J. Min and G. Veronis, “Absorption switches in metal-dielectricmetal plasmonic waveguides,” Opt. Exp., vol. 17, pp. 10757–10766, 2009.
  9. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Exp., vol. 13, pp. 10795–10800, 2005.
  10. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica. E, vol. 40, pp. 3025–3029, 2008.
  11. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett, vol. 29, pp. 1992–1994, 2004.
  12. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun, vol. 259, pp. 690–695, 2006.
  13. Feng Zhao1, Yun Zhang, Jizuo Zou, Wei Jiang, Zhong Shi, Xuegong Deng, Jie Qiao, Xuegong Deng, Gary C. Marsden, Bipin Bihari, and Ray Chen "Wavelength division multiplexers/demultiplexers for highthroughput optical links" Radiant Photonics Inc., Kramer Ln, Austin TX 78758, USA
  14. W. Lin and G. Wang, “Metal heterowave guide superlattices for a plasmonic analog to electronic bloch oscillations,” Appl. Phys. Lett, vol. 91, p. 143121, 2007.
  15. Q. Zhang, X.-G Huang, X.-S. Lin, J. Tao, and X.-P Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Exp., vol. 17, pp. 7549–7554, 2009.
  16. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide lters with nanometeric sizes,” Opt. Lett, vol. 33, pp. 2874–2876, 2008..
  17. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and A. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Exp., vol. 16, pp. 16314–16325, 2009.
  18. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phy. Lett., vol. 90, p. 161130, 2007.
  19. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Bidirectional subwavelength slit splitter for THz surface plasmons,” Opt. Exp., vol. 15, p. 18050, 2007.
  20. P.B.Johnson, R.W.Christy, Phys. Rev. B 6, 4370 (1972)
  21. Feifei Hu and Zhiping Zhou,""Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities" J. Opt. Soc. Am. B / Vol. 28, No. 10 / October 2011
  22. P.B.Johnson, R.W.Christy, Phys. Rev. B 6, 4370 (1972).
Index Terms

Computer Science
Information Sciences

Keywords

Plasmonics Surface plasmon polration Localized surface plasmon resonance wavelength