Abstract

Attribute subset selection refers to the method of choosing the set of attributes that best describes the dataset. The attributes obtained from the attribute subset selection method when applied to machine learning operations such as clustering, classification etc., should provide the same result as that of the original dataset. The method employed for attribute subset selection must be efficient in terms of selecting the relevant attributes and must also be accurate in terms of eliminating the redundant attributes.

With the aim of satisfying the above two goals we have designed a feature subset selection method using the precise relevance measures. We first efficiently select the relevant attributes using the relevance measure “symmetric uncertainty (SU)”. The selected relevant attributes are, then divided into clusters based on “graph-theoretic” clustering method using the relevance measure “conditional mutual information (CMI)”. Then the relevance measure “symmetric uncertainty” is used to select the attributes that are strongly related to the target class and also which best represents each cluster, thus giving us an accurate and independent subset of
features. The above developed method not only produces smaller more accurate subset of features but also improves the performance of the machine learning operations such as naive base classifier

References

13. Krier C., Francois D., Rossi F. and Verleysen M., Feature clustering and mutual information for the selection of variables in spectral data, In Proc European Symposium on Artificial Neural Networks Advances in Computational Intelligence and Learning, pp 157-162 (2007).
183-190 (1993).
19. Prim R.C., Shortest connection networks and some generalizations, Bell System
20. Souza J., Feature selection with a general hybrid algorithm, PhD, University of Ottawa,
Ottawa, Ontario, Canada (2004).
21. Van Dijk G. and Van Hullefor M.M., Speeding Up the Wrapper Feature Subset Selection
in Regression by Mutual Information Relevance and Redundancy, International Conference on
Artificial Neural Networks (2006).
22. Xing E., Jordan M. and Karp R., Feature selection for high-dimensional genomic
23. Yu L. and Liu H., Feature selection for high-dimensional data: a fast correlation-based
856-863 (2003).
24. Yu L. and Liu H., Redundancy based feature selection for microarray data, In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
25. Yu L. and Liu H., Efficient feature selection via analysis of relevance and redundancy,
26. Qinbao Song, Jingjie Ni and Guangtao Wang, IEEE Transactions on knowledge and
30. Liu H., Motoda H. and Yu L., Selective sampling approach to active feature selection,

Index Terms

Computer Science Artificial Intelligence

Keywords
Relevant feature, Redundant features, relevance measures, symmetric uncertainty (SU), conditional mutual information (CMI).