CFP last date
20 June 2024
Reseach Article

Quality Factor Study for Cone-metal Shelled Structure

by Mohammed Nadhim Abbas
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 127 - Number 9
Year of Publication: 2015
Authors: Mohammed Nadhim Abbas
10.5120/ijca2015906455

Mohammed Nadhim Abbas . Quality Factor Study for Cone-metal Shelled Structure. International Journal of Computer Applications. 127, 9 ( October 2015), 1-4. DOI=10.5120/ijca2015906455

@article{ 10.5120/ijca2015906455,
author = { Mohammed Nadhim Abbas },
title = { Quality Factor Study for Cone-metal Shelled Structure },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 127 },
number = { 9 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume127/number9/22754-2015906455/ },
doi = { 10.5120/ijca2015906455 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:19:24.813772+05:30
%A Mohammed Nadhim Abbas
%T Quality Factor Study for Cone-metal Shelled Structure
%J International Journal of Computer Applications
%@ 0975-8887
%V 127
%N 9
%P 1-4
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Pure plasmonic mode and hybrid plasmonic mode have been demonstrated. The cone-metal shelled structure is proposed. The two modes have been examined, pure plasmonic mode and hybrid plasmonic mode. At room temperature, the quality factor of the two modes has been compared and we found that the quality factor of hybrid plasmonic mode is 775 when the side angle of the cone structure ranged (60°-70°) whereas the quality factor for pure plasmonic mode is 310 when the side angle of the cone structure ranged (60°-70°). Also, we examined a quality factor of two modes at different temperature and we got an ultra high quality factor for pure plasmonic mode about 1.4 M at 0 K whereas the quality factor for hybrid plasmonic mode is about 70,000 at 0 K.

References
  1. V. J. Sorger and X. Zhang,” Spotlight on Plasmon Lasers” Science 333, 709 (2011).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit” Nat. Photonics 4, 83 (2010).
  3. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit,” Lasing in metallic-coated nanocavities” Nat. Photonics 1, 589 (2007).
  4. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides “Opt. Express 17, 11107 (2009).
  5. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers” Opt. Express 18, 8790 (2010).
  6. Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature”Appl. Phys. Lett. 98, 131110 (2011).
  7. Weeber J-C, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, Gonz´alez M U and Baudrion A-L, “Near field characterization of Bragg mirrors engraved in surface plasmon waveguides” Phys. Rev. B 70 235406 (2004).
  8. Liu Z-W, Wei Q-H and Zhang X, “Surface plasmon interference nanolithography”, Nano Lett. 5 957–61 (2005)
  9. Wang B and Wang G P Plasmon Bragg reflectors and nanocavities on flat metallic surfaces Appl. Phys. Lett. 87 013107 (2005).
  10. Gong Y and Vuckovic J, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications”, Appl. Phys. Lett. 90 033113 (2007).
  11. Weeber J-C, Bouhelier A, des Francs G C, Markey L and Dereux A, “Submicrometer in-plane integrated surface plasmon cavities” Nano Lett. 7 1352–9 (2007).
  12. Kocabas A, Senlik S S and Aydinli A, “Plasmonic bandgap cavities on biharmonic gratings” Phys. Rev. B 77 195130 (2008).
  13. Carrie E. Hofmann, Ernst Jan R. Vesseur, Luke A. Sweatlock, Henri J. Lezec, F. Javier García de Abajo ,Albert Polman , and Harry A. Atwater, “Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathode luminescence” Nano Lett. 7 3612–7. (2007)
  14. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R Silver, “nanowires as surface plasmon resonators” Phys. Rev. Lett. 95 257403 (2005)
  15. Miyazaki H T and Kurokawa Y, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity” Phys. Rev. Lett. 96 097401 (2006)
  16. E.D. Palik, Handbook of Optical constants of solids (Academic press, 1998).
Index Terms

Computer Science
Information Sciences

Keywords

Plasmonics Surface plasmon polration Quality factor