Abstract

The advances known by Microarray technology have provided birth to enormous ameliorations and investigations in different domains, such as medicine, the pharmaceutical, biotechnology, agrochemical and food industries. The exploitation of Microarray data is still complex for many researchers, due to its huge quantity generated by different experiments. The produced Microarray data must be treated in order to get more valuable information, compare data by improving its clear visualization, make further analysis and respond to crucial hypotheses. Many researchers have found out the biological significance of Microarray data as the greatest challenge. This task couldn’t be achieved without preprocessing and taking into consideration biases caused by the presence of variation sources in the Microarray experiment steps. This article will highlight the importance of implementing the preprocessing and the Data mining techniques on Microarray data. It will demonstrate the usefulness of results obtained after these techniques application, and the efficiency of PCA technique for analyzing Microarray data.
 loop-design microarray data analysis", Computers in Biology and Medicine, vol. 42, no. 2, pp.
2. N. E. Olson, "The microarray data analysis process: from raw data to biological
4. Fadoua Rafii, M. Aït Kbir and B. D. Rossi Hassani, "Microarray Data Integration to
 Explore the Wealth of Sources Generated by Modern Molecular Biology", Veille Stratégique
 Scientifique et Technologique, Granada, Spain, 11 - 13 may 2015.
5. Fadoua Rafii, M. Aït Kbir and B. D. Rossi Hassani, "Microarray Data Preprocessing To
 Improve Exploration on Biological Databases", International Conference on Big Data, Cloud and
 Applications, Tetuan, Morocco, 25 - 26 may 2015.
6. G. Ventimiglia and S. Petralia, "Recent Advances in DNA Microarray Technology: an
7. Schena, M., Shalon, D.; Davis, R. W.; Brown, P. O., "Quantitative monitoring of gene
 Davis RW, "Yeast microarrays for genome wide parallel genetic and gene expression analysis",
9. Schena, M., Heller, R., Theriault, T., Konrad, K., Lachenmeier, E., and Davis, R. W.,
 "Microarrays: biotechnology’s discovery platform for functional genomics", Trends Biotech. 16,
10. K. Kafadar and T. Phang, "Transformations, background estimation, and process effects
 chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic
15. Sánchez-Pla, A., "DNA Microarrays Technology: Overview and Current Status",
17. J. Demeter, C. Beauheim, J. Gollub, T. Hernandez-Boussard, H. Jin, D. Maier, J. C.
 Matese, M. Nitzberg, F. Wymore, Z. K. Zachariah, P. O. Brown, G. Sherlock, and C. A. Ball,
 "The Stanford Microarray Database: implementation of new analysis tools and open source
2007.

Index Terms

Computer Science Information Sciences

Keywords

Microarray data, Preprocessing techniques, Analysis, PCA technique