Abstract

Mobile Cloud Computing is a new paradigm that transfers the data storage and the data processing from a mobile device to a power full cloud server which has a big storage. Mobile cloud applications use offloading schemes to move the computing power and data storage away from mobile phones into this cloud server. However, for a code compilation, offloading might consume more energy than the local processing of data when the size of code is small. So, a new offloading schemes are needed to be adaptive with the code size of an application or a service. This paper introduces a new method-based offloading scheme for mobile application. The proposed scheme divides each mobile application into presentation layer, logical layer and data access layer. Also, it considers each service or process in each layer as a set of methods. The methods of presentation layer resides on the mobile device, the methods of data layer is fully deployed on the cloud to minimize the data access, and the methods of logic layer is distributed between the cloud and mobile device by using formulated cost model which takes into account energy, memory, time, and data transfer delay costs. The conducted simulation
results show that the offloading performance of the proposed scheme is much better than local
processing scheme.

References

computing: architecture, applications, and approaches. Wireless communications and mobile
2. Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar, and Rajkumar Buyya. A
review on distributed application processing frameworks in smart mobile devices for mobile
3. A Khan, Mazliza Othman, S Madani, and S Khan. A survey of mobile cloud computing
application models. 2013.
Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the sixth
5. Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
In Proceedings of the 8th international conference on Mobile systems, applications, and
6. Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso. Calling the
cloud: enabling mobile phones as interfaces to cloud applications. In Middleware 2009, pages
7. Dejan Kovachev, Tian Yu, and Ralf Klamma. Adaptive computation offloading from
mobile devices into the cloud. In Parallel and Distributed Processing with Applications (ISPA),
interface paradigm in the smalltalk-80 system. Journal of object oriented programming,
11. Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuoqing
Morley Mao, and Lei Yang. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, pages


Index Terms

Computer Science

Distributed Systems

Keywords

Application partitioning, Battery Consumption, Mobile cloud computing, Offloading