Abstract

Semi-automatic image segmentation methods are among the segmentation methods that are used to achieve high quality segmentation result. These techniques are said to be interactive because their processes required input from their users to distinguish between the foreground and background of the image via color makers. Therefore color and texture features are an important aspect for the improvement of those methods in order to achieve success. The reason is that, the addition of a vast range of color features can guide the region merging process to achieve accurate results.

In this paper, we proposed a new interactive image segmentation method based on extracted pixels similarity features with the aid of color parameters comprising of seven features. These are namely: Red, Green, Blue, Hue, Saturation, Value and Texture Features. In our method, the initial step is to pre-segment the image. The next is the extraction of the color features from the image. Finally our method then merge all the pre-segmented regions of the image background...
to extract the contour. Our proposed method has successfully been implemented and achieve
good quality segmentation results by measuring the similarity between a region and its
neighboring regions. In this method, the image regions are acquired by means of a
pre-segmentation process via mean-shift. The region merging process was carried out based
on the highest similarity between regions. Thus, the regions were merged with their neighboring
regions based on the fact that the highest similarity criteria was achieved.

From the various experiments that were performed on the nine test images, it is evident that our
proposed method achieved an average of 98.99% from all experiment carried out on the nine
test images, when compared with their ground truth. That shows that our proposed method
produced better segmentation results than the Graph Cut and the Dimension-free Directional
Filter Bank Thresholding and Multistage Adaptive Thresholding respectively. Finally, our
proposed method have been proved to be robust enough to segment both color and greyscale
images and based on the results produced it can be concluded that our proposed method have
achieved good quality segmentation results for both color and greyscale images.

References

2. Costas Panagiotakis, HarrisPapadakis, EliasGrinias, and NikosKomodakis, “Interactive
3. Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient Graph-Based Image
4. Frank Heckel, Olaf Konrad, Horst Karl Hahn, and Heinz-OttoPeitgen, “Interactive 3D
medical image segmentation with energy-minimizing implicit functions,” Virtual Real. Braz.
5. B. Chen, Q. Zou, and Y. Li, “A new image segmentation model with local statistical
Detection using Different Skin Color Extraction Techniques,” Int. J. Comput. Appl. 0975 - 8887,
vol. 54, Sep. 2012.
10. Doring Comaniciun and Peter Meer, “Mean Shift: A Robust Approach Towards Feature
12. Liwei Wang, Yan Zhang, and Jufu Feng, “On the Euclidean Distance of Images,” IEEE

14. Qiong Yang, Xiaoou Tang, Chao Wang, and Zhongfu Ye, “Progressive Cut: An Image
2007.

Tziritas, “Interactive image segmentation based on synthetic graph coordinates,” Pattern


17. University of California and Berkeley Segmentation Dataset (BSDS), “Berkeley
2013.


19. Rarasmaya Indraswari, Agus Zainal Arifin, Dini Adni Navastara, and Nasar Jawas,
“Teeth Segmentation on Dental Panoramic Radiograph using Dimension-free Directional Filter

Index Terms

Computer Science
Image Processing

Keywords

Semi-automatic segmentation, color images, highest similarity, region merging, mean-shift.