CFP last date
20 September 2024
Reseach Article

Brain Tumour Disease Pattern Identification from Metabolites in Magnetic Resonance Spectroscopy Graph using Data Mining Techniques

by Meghana Nagori, Madhuri S. Joshi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 138 - Number 13
Year of Publication: 2016
Authors: Meghana Nagori, Madhuri S. Joshi
10.5120/ijca2016909027

Meghana Nagori, Madhuri S. Joshi . Brain Tumour Disease Pattern Identification from Metabolites in Magnetic Resonance Spectroscopy Graph using Data Mining Techniques. International Journal of Computer Applications. 138, 13 ( March 2016), 19-22. DOI=10.5120/ijca2016909027

@article{ 10.5120/ijca2016909027,
author = { Meghana Nagori, Madhuri S. Joshi },
title = { Brain Tumour Disease Pattern Identification from Metabolites in Magnetic Resonance Spectroscopy Graph using Data Mining Techniques },
journal = { International Journal of Computer Applications },
issue_date = { March 2016 },
volume = { 138 },
number = { 13 },
month = { March },
year = { 2016 },
issn = { 0975-8887 },
pages = { 19-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume138/number13/24440-2016909027/ },
doi = { 10.5120/ijca2016909027 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:39:37.033372+05:30
%A Meghana Nagori
%A Madhuri S. Joshi
%T Brain Tumour Disease Pattern Identification from Metabolites in Magnetic Resonance Spectroscopy Graph using Data Mining Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 138
%N 13
%P 19-22
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

One of the significant applications of image classification is the medical field in which the abnormal brain tumor images are categorized prior to treatment planning. Accurate identification of the type of the brain abnormality is highly essential since the treatment planning is different for all the brain abnormalities. Any false detection may lead to a wrong treatment which ultimately leads to fatal results. By employing the Magnetic Resonance Spectroscopy (MRS) graph and thereby extracting the values of the metabolites from the graph one can classify the tumor based on the values of metabolites. The aim of this research is to identify brain tumour disease pattern from MRS images to perform differential diagnosis. The authors have employed the use of the Naïve –Bayes and J48 classifier for identification of the disease pattern from the three metabolite ratios.

References
  1. Christian Plathow, Wolfgang A. Weber, “Tumor Cell Metabolism Imaging”, The Journal of Nuclear Medicine, Vol. 49, No. 6, June 2008
  2. S. Chawla,S. Wang,R.L. Wolf,J.H. Woo,J. Wang,D.M. O’Rourke,K.D. Judy,M.S. Grady,E.R. Melhem,H. Poptani, “Arterial Spin-Labeling and MR Spectroscopy in the Differentiation of Gliomas”, AJNR Am J Neuroradiol, Oct 2007
  3. Alessandro Alimenti, Jacqueline Delavelle,François Lazeyras, Hasan Yilmaz , Pierre-Yves Dietrich, “Magnetic Resonance Spectroscopy in the Progression of Gliomas” , European neurology ,Neurosurgery, Geneva University Hospital, Geneva , Switzerland
  4. Fernando Gonz, Navarro and Llu, A. Belanche-Mu, “Using Machine Learning Techniques to Explore H-MRS data of Brain Tumors”,8th Mexican IEEE international conference on artificial intelligence, 2009,pp 134-139
  5. L. Lukas, A. Devos, J.A.K. Suykens, L. Vanhamme, C. Majo, A. Moreno-Torres, M. Van Der Graaf, F.A. Howe, A.R. Tate, C. Aru, S. Van Huffel, “Brain tumor classification based on longecho proton MRS signals”, Artificial Intelligence in Medicine, Vol. 31, pp.73-89, 2004
  6. Weibei Dou, Jean-Marc Constans, “Glial Tumors: Quantification and Segmentation from MRI and MRS”,Diagnostic Techniques and Surgical Management of Brain Tumours,2011,pp 93-116
  7. Simonetti A.W., Melssen W.J., Szabo de Edelenyi F., van Asten J.J.A., Heerschap A., and Buydens L.M.C., “Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification”, NMR in Biomedicine,Vol.18, pp.34–43, 2005
  8. Garcia S. and Herrera F., “Statistical comparisons of classifiers over multiple data sets for all pairwise comparisons”, Journal of Machine LearningResearch, vol.9. Issue 2, , pp677–694, 2008
  9. Garcia-Gomez J.M., Luts J., Julia-Sape M., Krooshof P., Tortajada S., Vicente Robledo J., Melssen W., Fuster-Garcia E., Olier I., Postma G., Monleon D.,Moreno-Torres A., Pujol J., Candiota A.-P., Martinez-Bisbal M.C., Suykens J.A.K., Buydens L.M.C., Celda B., Van Huffel S., Arus C., and Robles M.“Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy”, Magnetic Resonance Materials in Physics, Biology and Medicine, Vol.22, pp.5–18, 2009
  10. Galanaud D., Nicoli F., Chinot O., Confort-Gouny S., Figarella-Branger D., Roche P., Fuentes S., Fur Y.L., Ranjeva J.-P., and Cozzone P.J., “Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy”, Magnetic Resonance in Medicine,Vol 55, pp.1236–1245, 2006
Index Terms

Computer Science
Information Sciences

Keywords

MRS Metabolites Brain tumour Naïve-Bayes Confusion Matrix Cross-Validation J48