Call for Paper - March 2023 Edition
IJCA solicits original research papers for the March 2023 Edition. Last date of manuscript submission is February 20, 2023. Read More

Evaluation of Image Deblurring Techniques

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
Sudha Yadav, Charu Jain, Aarti Chugh
10.5120/ijca2016909492

Sudha Yadav, Charu Jain and Aarti Chugh. Article: Evaluation of Image Deblurring Techniques. International Journal of Computer Applications 139(12):32-36, April 2016. Published by Foundation of Computer Science (FCS), NY, USA. BibTeX

@article{key:article,
	author = {Sudha Yadav and Charu Jain and Aarti Chugh},
	title = {Article: Evaluation of Image Deblurring Techniques},
	journal = {International Journal of Computer Applications},
	year = {2016},
	volume = {139},
	number = {12},
	pages = {32-36},
	month = {April},
	note = {Published by Foundation of Computer Science (FCS), NY, USA}
}

Abstract

Degradation of images is one of the major problems in image processing. Blur in images is an unwanted reduction in bandwidth which degrades the image quality and it is difficult to avoid. Blur occur due to atmospheric turbulence as well as improper setting of camera. Along with blur effects, noise also corrupts the captured image. Restoration of image is a technique to get rid of the blur from the degraded image and recover the original image. Blur can be of various types like Gaussian blur, motion blur etc. Now a day’s there are various different techniques and methods have been proposed to deblur a degraded image. For specific types of blur there are specific methods to remove it. Image restoration has applications in various different-different fields like medical imaging, forensic science, and astronomy. In this paper, we will discuss various image deblurring techniques and their analysis of performance.

References

  1. M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, “Blind deconvolution of images using optimal sparse representations,” IEEE Trans. Image Process., vol. 14, no. 6, pp. 726–736, Jun. 2005.
  2. Dejee Singh, Mr R. K. Sahu “A survey of various image deblurring techniques”, IJARCCE vol. 2, issue 12 december 2013.
  3. D. G. Tzikas, A. C. Likas, and N. P. Galasanos, “Variational Bayesian sparse kernel-based blind imagedeconvolution with student’s- priors,” IEEE Trans. Image Process., vol. 18, no. 4, pp. 753–764, Apr. 2009.
  4. Jian-Feng Cai, Hui Ji, Chaoqiang Liu and Zuowei Shen, “Blind motion deblurring from a single image using sparse approximation”, 978-1-4244-3991-1/09/$25.00 ©2009 IEEE.
  5. Jian-Feng Cai, Hui Ji, Chaoqiang Liu and Zuowei Shen, “Framelet Based Blind Motion Deblurring From a Single Image”, IEEE Transaction on the image processing Vol. 21.No.2. February 2012.
  6. Mr. A. S. Mane, Prof. Mrs. M. M. Pawar “Removing blur from degraded image with blind deconvolution using canny edge detecting technique” vol. 1,issue 11 november 2014.
  7. K. Sato, S. Ishizuka, A. Nikami, M. Saot, “Control techniques for optical image stabilizing system”, IEEE Trans. Consum. Electron. 39 (3) (1993) 461–466.
  8. M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,”IEEE Trans. PAMI, vol. 26, no. 6, pp. 689–698, Jun. 2004.
  9. Ashwini M. Deshpande and Suprava Patnaik “Uniform and Non-uniform single image deblurring based on spares representation and adaptive dictionary learning”, IJMA, vol. 6, feb. 2014.
  10. Sunghyun Cho, Yasuyuki Matsushita, Seungyong Lee “Removing Non-Uniform Motion Blur from Images”, ©2007 IEEE 11th standard conference.
  11. C. Paramanand and A. N. Rajagopalan, “Non-uniform Motion Deblurring for Bilayer Scenes” ©2013 IEEE.
  12. Rupali Patil, Sangeeta Kulkarni, “Blur removel from images using canny and blind deconvolution techniques”, IJCTEE, 2011.
  13. Shan, Jiaya Jia, Aseem Agarwala “High-quality Motion Deblurring from a Single Image” ACM, 2008.
  14. Sunghoung cho, lee “Fast Motion Deblurring” ACM, Dec.2009.
  15. R. Dash, P. K. Sa, and B. Majhi, “RBFN based motion blur parameter estimation,” in Proc. IEEE International Conference on Advanced Computer Control, Singapore, Jan 2009, pp. 327-331.
  16. Jao P. A. Oliveira, Mario A. T. Figueirado, Jose M. Biouceas-Dias, “Blind estimation of motion blur parameters for image deconvolution” August 2012.
  17. Shamik Tiwari, V. P. Shukla, A. K. Singh, S. R. Biradar, “Review of motion blur estimation techniques” Journal of Image and Graphics Vol. 1, No. 4, December 2013.
  18. Lu Yuan, Jian Sun,”Image deblurring using blurry/noisy iimage pairs” ACM.
  19. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, andW. T. Freeman “Removing camera shake from a single photograph” 25(3):787–794, 2006.
  20. A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless “Single image deblur” In Proc. ICCV, 2011.
  21. R. Vio, J. Nagy, and W. Wamsteker. “Blind motion deblurring using multiple images”. Jrnl Comput. Phy., 228(14):5057–5071, 2009.
  22. O. Whyte, J. Sivic, A. Zisserman, and J. Ponce.” Non-uniform deblurring for shaken images”. In Proc. CVPR, 2010.
  23. L. Xu and J. Jia. “Two-phase kernel estimation for robust motion deblurring”. In Proc. ECCV, 2010.
  24. Aarpna Ashok, deepa, “handling noise and outliers in single image Deblurring using L0 Sparsity”, vol 4, issue 7, july 2015.
  25. D. Krishnan, T. Tay, and R. Fergus. “Blind deconvolution using a normalized sparsity measure”. In Proc. CVPR, 2011.
  26. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. “Understanding and evaluating blind deconvolution algorithms” In Proc. CVPR, 2009.
  27. J. Liu, S. Ji, and J. Ye. Slep. “Sparse learning with efficient projections”.2009. http://www.public.asu.edu/ jye02/Software/SLEP.
  28. Q. Shan, J. Jia, and A. Agarwala. “High-quality motion deblurring from a single image” ACM Transactions on Graphics, 27(3).
  29. Wenzhi Liao, Bart Goossens, Jan Aelterman, Hiep Quang Luong, Aleksandra Pizurica, Niels Wouters, Wouter Saeys, Wilfried Philips “Hyperspectral image deblurring with pca and total variation”.
  30. Swati Sharma, Shipra Sharma and Rajesh Mehra, ” Image restoration using modified LR algorithm in the presence of Gaussian and motion blur” AEEE, vol 3, 2013.
  31. L. Ilic, A. Pizurica, E. Vansteenkiste and W. Philips,“Image blur estimation based on the average cone of ratio in the wavelet domain,” Proc. SPIE, Wavelet Applications in Industrial Processing VI, 72480F, pp. 1–10, 2009.
  32. Prodip Biswas, Abu Sufian Sarkar, Mohammed Mynuddin, “Deblurring images using weiner filter”, IJCA vol.109, jan 2015.
  33. H. Zhang, L. Zhang, H. Shen, “A super-resolution reconstruction algorithm for hyperspectral images,” Signal Processing, vol. 92, no. 9, pp. 2082–2096, 2012.
  34. Http://in.mathworks.com/help/images/examples/deblurring images using rgularized filter.
  35. W. Liao, R. Bellens, A. Piˇzurica, W. Philips and Y. Pi,“Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi- Supervised Feature Extraction,” IEEE Journal of SelectedTopics in Applied Earth Observations and Remote Sensing, vol. 5, no. 4, pp. 1177–1190, 2012.
  36. Neetin kumar, Dr. Manish shrivastva,” Image deblurring using a neural network approaches”, IJEIT, vol 2, September 2012
  37. Ankit Gupta,Michel Cohen, Brian Curless, “ Single image deblurring using motion density functions”, chapter- “computer vision Eccv 2010”.
  38. L. Xu and J. Jia.” Depth-aware motion deblurring”. In Proc. ICCP, 2012.
  39. Leslie N. Smith, “Estimating an image’s blur kernel from edge intensity profiles” Naval research laboratory. August 2012.

Keywords

Deconvolution, Degradation model, Point spread function (PSF), Peak signal to noise ratio (PSNR).