CFP last date
20 May 2024
Reseach Article

Comparative Molecular Modeling of Insect Glutathione S-Transferases

by S.K.M.Habeeb, Dr. V. Anuradha, A. Praveena
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 14 - Number 5
Year of Publication: 2011
Authors: S.K.M.Habeeb, Dr. V. Anuradha, A. Praveena
10.5120/1841-2492

S.K.M.Habeeb, Dr. V. Anuradha, A. Praveena . Comparative Molecular Modeling of Insect Glutathione S-Transferases. International Journal of Computer Applications. 14, 5 ( January 2011), 16-22. DOI=10.5120/1841-2492

@article{ 10.5120/1841-2492,
author = { S.K.M.Habeeb, Dr. V. Anuradha, A. Praveena },
title = { Comparative Molecular Modeling of Insect Glutathione S-Transferases },
journal = { International Journal of Computer Applications },
issue_date = { January 2011 },
volume = { 14 },
number = { 5 },
month = { January },
year = { 2011 },
issn = { 0975-8887 },
pages = { 16-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume14/number5/1841-2492/ },
doi = { 10.5120/1841-2492 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:02:37.171301+05:30
%A S.K.M.Habeeb
%A Dr. V. Anuradha
%A A. Praveena
%T Comparative Molecular Modeling of Insect Glutathione S-Transferases
%J International Journal of Computer Applications
%@ 0975-8887
%V 14
%N 5
%P 16-22
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The evolution of resistance by an insect to an insecticide may involve several mechanisms. Many studies have shown that insecticide-resistant insects have elevated levels of glutathione S-transferases activity in crude homogenates, which suggests a role for GSTs in resistance. This prompted us to select the GSTs from H.armigera, L.lineolaris and M.sexta due to their economic importance. The 3D models for the GSTs from the insects were built using Modeller9V7, structure comparison between the GSTs was done using SwissPDBViewer and the models were docked with Piperonyl Butoxide (PB), TagitininC (TC), a phytochemical from T.diversifolia, Plumbagin (PL) and a comparative docking analysis was done. The results indicate that the compounds Piperonyl Butoxide was found to be more feasible in terms of docking energy closely followed by Tagitinin C and can be used in sync as potential regulator of insect GST activity.

References
  1. Janet Hemingway and Hilary Ranson, Insecticide Resistance in Insect Vectors of Human Disease, Annual Review of Entomology 2000, Vol. 45: 371-391.
  2. I. Denholm, Monitoring and Interpreting Changes in Insecticide Resistance, Functional Ecology, Vol. 4, No. 5 (1990), pp. 601-608.
  3. Bull, D. L. “Factors that influence tobacco budworm, Heliothisvirescens, resistance to organophosphorous insecticides”. Bull.Entomol. Soc. Amer (1981) 27: 193-197.
  4. Christopher M. Bruns, Structural Molecular Biology & Protein Design, the Scripps Research Institute, http://www.scripps.edu/~bruns/gst.html.
  5. Whitten, C. J. and D. L. Bull. Comparative toxicity, absorption and metabolism of chlorpyrifos and dimethyl homologue in methyl parathion-resistant and susceptible tobacco budworm. Pestic. Biochem. Physiol.(1974) 4: 266-274.
  6. Grant DF., Evolution of glutathione S-transferase subunits in Culicidae and related Nematocera: Electrophoretic and immunological evidence for conserved enzyme structure and expression. Insect Biochem. (1991) 21:435–45.
  7. Grant DF, Dietze EC, Hammock BD, Glutathione S-transferase isozymes in A. aegypti: purification,characterization, and isozyme specific regulation. Insect. Biochem.(1991) 4:421–33.
  8. Enayati AA, Ranson H, Hemingway J., Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005 Jan; 14(1):3-8.
  9. Clark AG, Dick GL, Martindale SM, Smith JN. Glutathione S-transferases from the New Zealand grass grub,Costelytra zealandica, Insect Biochem. 1985. 15:35–4.
  10. Clark AG, Shamaan NA, Dauterman WC, Hayaoka T. Characterization of multiple glutathione transferases from the housefly, Musca domestica (L). Pestic.Biochem. Physiol. 1984, 22:51–59.
  11. Toung YS, Hsieh T, Tu CD. Drosophila glutathione S-transferase 1-1shares a region of sequence homology with maize glutathione S-transferase III. Proc. Natl. Acad. Sci. USA 1990, 87:31–35.
  12. Mannervik B., Danielson U. H. Glutathione transferases – structure and catalytic activity. CRC Crit. Rev. Biochem. 1988;23:283–337.
  13. Zhao T., Singhal S. S., Piper J. T., Cheng J., Pandya U., Clark-Wronski J., Awasthi S., Awasthi Y. C. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Arch. Biochem. Biophys. 1999; 367:216–224.
  14. Johansson A.-S., Mannervik B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J. Biol. Chem. 2001; 276:32061–32065.
  15. Yin Z., Ivanov V. N., Habelhah H., Tew K., Ronai Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000; 60:4053–4057.
  16. Bhargava M. M., Listowsky I., Arias I. M. Ligandin. Bilirubin binding and glutathione S-transferase activity are independent processes. J. Biol. Chem. 1978; 253:4112–4115.
  17. Dulhunty A., Gage P., Curtis S., Chelvanayagam G., Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J. Biol. Chem. 2001; 276:3319–3323.
  18. Lo Bello M., Nuccetelli M., Caccuri A. M., Stella L., Parker M. W., Rossjohn J., McKinstry W. J., Mozzi A. F., Federici G., Polizio F., et al. Human glutathione transferase P1-1 and nitric oxide carriers: A new role for an old enzyme. J. Biol. Chem. 2001; 276:42138–42145.
  19. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 1997; 10:2–18.
  20. Board P. G., Coggan M., Chelvanayagam G., Easteal S., Jermiin L. S., Schulte G. K., Danley D. E., Hoth L. R., Griffor M. C., Kamath A. V., et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J. Biol. Chem. 2000; 275:24798–24806.
  21. Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 215:403-10.
  22. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007 Chapter 2, Unit 2.9.
  23. Wiederstein and Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research (2007) 35, W407-W410.
  24. Lupyan D., Leo-Macias A., Ortiz AR. A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics, (2005) 21, 3255-3263.
  25. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V., Lescot M., Claverie J.-M., Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist Nucleic Acids Research. 2008 Jul 1; 36 (Web Server Issue):W465-9. Epub 2008 Apr 19.
  26. Stephen V.Evans, Angharad M. R. Gatehouse and Linda E. Fellows. Detrimental effects of 2,5-Dihydroxymethyl-3,4-dihydroxypyrrolidine in some tropical legume seeds on larvae of the bruchid Callosobruchus maculatus , Entomol. Exp.appl. 37, 257-261 (1985).
  27. Sheehan D, Meade G, Foley VM, Dowd CA (2001). Review article,Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1-16.
  28. Ranson H, Hemingway J (2005). Mosquito glutathione transferases. Review. Methods Enzymol. 401: 226-241.
  29. Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara L, Wilce MCJ, Ketterman AJ (2005). Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem. J. 388: 763-771.
  30. Nisha M, Paily KP, Vanamail P, Abidha, Kalyanasundaram M, Balaraman K (2002) Macrofilaricidal activity of the plant Plumbago indica/rosea in vitro. Drug Dev Res 56(1):33–39.
  31. Ayodele O. Kolawole, Ralphael E. Okonji and Joshua O. Ajele. Inhibition of glutathione S-transferases (GSTs) activity from cowpea storage bruchid, Callosobrochus maculatus Frabiricius by some plant extracts, African Journal of Biotechnology Vol. 9 (20), pp. 5516-5521.
  32. Wu G, Miyata T, Kang CY, Xie LH. Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops. Pest Manag Sci. 2007 May; 63(5):500-10.
Index Terms

Computer Science
Information Sciences

Keywords

Gluatathione S-Transferase (GST) Homology Modeling Structure Comparison RMSD Docking Plumbgin Tagitinin C & Piperonyl butoxide