CFP last date
21 October 2024
Reseach Article

Privacy-Preserving Distributed Data Mining Techniques: A Survey

by V. Baby, N. Subhash Chandra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 143 - Number 10
Year of Publication: 2016
Authors: V. Baby, N. Subhash Chandra
10.5120/ijca2016910381

V. Baby, N. Subhash Chandra . Privacy-Preserving Distributed Data Mining Techniques: A Survey. International Journal of Computer Applications. 143, 10 ( Jun 2016), 37-41. DOI=10.5120/ijca2016910381

@article{ 10.5120/ijca2016910381,
author = { V. Baby, N. Subhash Chandra },
title = { Privacy-Preserving Distributed Data Mining Techniques: A Survey },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2016 },
volume = { 143 },
number = { 10 },
month = { Jun },
year = { 2016 },
issn = { 0975-8887 },
pages = { 37-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume143/number10/25116-2016910381/ },
doi = { 10.5120/ijca2016910381 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:46:03.870498+05:30
%A V. Baby
%A N. Subhash Chandra
%T Privacy-Preserving Distributed Data Mining Techniques: A Survey
%J International Journal of Computer Applications
%@ 0975-8887
%V 143
%N 10
%P 37-41
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey on different privacy preserving data mining methods and analyses the representative techniques for privacy preserving data mining. We majorly discuss the distributed privacy preservation techniques which provide secure solutions using primitive operations of cryptographic protocols such as secure multi-party computation (SMPC), secret sharing schemes (SSS) and homomorphic encryption (HC).

References
  1. E. Bertino, I.N. Fovino, L.P. Provenza. A Framework for Evaluating Privacy Preserving Data Mining Algorithms. Data Mining and Knowledge Discovery, 11 (2): pp. 121-154, 2005.
  2. Pedersen, T.B., Saygin, Y., Savas, E.: Secret sharing vs. encryption-based techniques for privacy preserving data mining. In: UNECE/Eurostat Work Session on SDC (2007).
  3. Oliveira, S.R.M.: Privacy preserving clustering by data transformation. In: 18th Brazilian Symposium on Databases, pp. 304–318 (2003)
  4. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: 9th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining.ACM Press (2003).
  5. Inan, A., Kaya, S.V., Saygin, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng., 646–666 (2007).
  6. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: KDD, pp. 593–599 (2005).
  7. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: ACM Conference on Computer and Communications Security, pp. 486–497 (2007)
  8. Jha, S., Kruger, L., McDaniel, P.: Privacy Preserving Clustering. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417.Springer, Heidelberg (2005).
  9. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD Explor. Newslett. 4(2), 12–19 (2002).
  10. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient Privacy Preserving K-Means Clustering. PAISI 2010. LNCS, vol. 6122, pp. 154–166. Springer, Heidelberg (2010).
  11. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy preserving k-means clustering with additive secret sharing. In: 2008 International Workshop on Privacy and Anonymity in Information Society, Nantes, France, pp. 3–11 (2008).
  12. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979).
  13. Agrawal, R., and Srikant, R. (2000). Privacy Preserving Data Mining. ACM SIGMOD International Conference on Management of Data, SIGMOD’00, Dallas, USA. 439-450.
  14. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the k-th ranked element. In Proc. Advances in Cryptology – EUROCRYPT 2004, volume 3027 of LNCS, pages 40–55. Springer, 2004.
  15. Kantarcioglu, M., Clifton, C.: Privacy-preserving Distributed Mining of Association Rules on Horizontally Partitioned Data. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), pp. 639–644 (2002)
  16. Verykios, S., Bertino, E., Fovino, I., Provenza, L., Saygin, Y., Theodoridis, Y.: State of the-art in Privacy Preserving Data Mining. ACM SIGMOD Record 33(1), 50–57 (2004)
  17. Bertino, E., Fovino, I., Provenza, L.: A Framework for Evaluating Privacy Preserving DataMining Algorithms. Data Mining and Knowledge Discovery 11(2), 121–154 (2005).
  18. Lindell, Y. & Pinkas, B. (2002). Privacy Preserving Data Mining. Journal of Cryptology, 15 (3), 177-206. (An extended abstract appeared in Advances in Cryptology, CRYPTO’00. 36-54.)
  19. J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In Proc. Advances in Cryptology – ASIACRYPT 2005, volume 3778 of LNCS, pages 236–252, 2005.
  20. J.Brickell and V.Shmatikov. Privacy-preserving classifier learning. In Proc. 13th International Conference on Financial Cryptography and Data Security, 2009.
  21. Y Lindell, B Pinkas, Privacy preserving data mining, in CRYPTO ’00: Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 2000), pp. 36–54,2000.
  22. L.Kissner and D. Song. Privacy-preserving set operations. In Proc. Advances in Cryptology – CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, 2005.
Index Terms

Computer Science
Information Sciences

Keywords

Data mining K-means clustering Data privacy Privacy preserving Multiparty computation Threshold Cryptography.