Abstract

The present investigation addressed mixed convection heat transfer of nanofluid in a lid driven square cavity with three triangular heating blocks. Finite volume discretization method with SIMPLE algorithm is employed for solving the two-dimensional Navier-Stokes and energy balance equations. The method used is validated against previous works. Two cases were considered depending on the position of three triangular heating blocks. Effects of pertinent parameters such as: position of triangular heating blocks, the Richardson number (0.1 ≤ Ri ≤ 100), the Prandtl number of the pure water (Pr = 6.2) and the volume fraction of nanoparticles (0 ≤ φ ≤ 0.05) on the flow and Nusselt number are investigated. The results of this study illustrate that, by reducing Richardson number and increasing the volume fraction of nanoparticles, the average Nusselt number increases. It is also found that there is an optimal position of triangular heating blocks where the heat transfer rate is maximized.
1. M. Kalteh, K. Javaherdeh, T. Azarbarzin, Numerical solution of nanofluid mixed
convection heat transfer in a lid-driven square cavity with a triangular heat source, Powder

2. A.W. Islam, M.a.R. Sharif, E.S. Carlson, Mixed convection in a lid driven square cavity
5244–5255.

3. K. Khanafar, S.M. Aithal, Laminar mixed convection flow and heat transfer characteristics

4. H.F. Oztop, I. Dagtekin, A. Bahloul, Comparison of position of a heated thin plate located

5. Sheikholeslami M, Gorji-Bandpy M, Vajravelu K. Lattice Boltzmann simulation of
magnetohydrodynamic natural convection heat transfer of Al2O3-water nanofluid in a horizontal

convection between a decentered triangular heating cylinder and a square outer cylinder filled
with a pure fluid or a nanofluid using the lattice Boltzmann method, Powder Technol. 277 (2015)
193–205

convection between a square outer cylinder and an inner isosceles triangular heating body,

8. H.F. Oztop, Z. Zhao, B. Yu, Fluid flow due to combined convection in lid-driven enclosure

9. I. Pishkar, B. Ghasemi, Cooling enhancement of two fins in a horizontal channel by

10. M. Corcione, Empirical correlating equations for predicting the effective thermal

11. Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, A review on natural convective heat

12. M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular

13. R. Iwatsu, J.M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable

14. H. Moumni, H. Welhezi, R. Djebali, E. Sediki, Accurate finite volume investigation of
nanofluid mixed convection in two-sided lid driven cavity including discrete heat sources, Appl.

16. Z. Boulahia, A. Wakif, and R. Sehaqui, “Natural Convection Heat Transfer of the
nanofluids in a Square Enclosure with an Inside Cold Obstacle," International Journal of
Innovation and Scientific Research, vol. 21, no. 2, pp. 367–375, April 2016

17. M. Muthtamiliselvan, D.H. Doh, Mixed convection of heat generating nanofluid in a
lid-driven cavity with uniform and non-uniform heating of bottom wall, Appl. Math. Model. 38
(2014) 3164–3174.

18. Z. Boulahia and R. Sehaqui, "Numerical Simulation of Natural Convection of Nanofluid in

Index Terms

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Applied Sciences</th>
</tr>
</thead>
</table>

Keywords

Mixed convection, Lid driven, Cavity, Triangular block, Nanofluid.