Abstract

The Web is a context in which traditional Information Retrieval methods are challenged. Given the volume of the Web and its speed of change, the coverage of modern web search engines is relatively small. Search engines attempt to crawl the web exhaustively with crawler for new pages, and to keep track of changes made to pages visited earlier. The centralized design of
Design and Implementation of Scalable, Fully Distributed Web Crawler for a Web Search Engine

crawlers introduces limitations in the design of search engines. It has been recognized that as
the size of the web grows, it is imperative to parallelize the crawling process. Contents other
then standard documents (Multimedia content and Databases etc) also makes searching harder
since these contents are not visible to the traditional crawlers. Most of the sites stores and
retrieves data from backend databases which are not accessible to the crawlers. This results in
the problem of hidden web. This paper proposes and implements DCrawler, a scalable, fully
distributed web crawler. The main features of this crawler are platform independence,
decentralization of tasks, a very effective assignment function for partitioning the domain to
crawl, and the ability to cooperate with web servers. By improving the cooperation between web
server and crawler, the most recent and updates results can be obtained from the search
engine. A new model and architecture for a Web crawler that tightly integrates the crawler with
the rest of the search engine is designed first. The development and implementation are
discussed in detail. Simple tests with distributed web crawlers successfully show that the
Dcrawler performs better then traditional centralized crawlers. The mutual performance gain
increases as more crawlers are added.

Reference

- David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina
 Panigrahy. (1997) Consistent hashing and random trees: Distributed caching protocols for
 Theory of Computing, pages 654-663, El Paso, Texas,
- David Karger, Tom Leighton, Danny Lewin, and Alex Sherman. (1999.) Web caching with
- Demetrios Zeinalipour-Yazti and Marios Dikaiakos. (2002) Design and implementation of
 Notes in Computer Science, pages 58-74.
- Hongfei Yan, Jianyong Wang, Xiaoming Li, and Lin Guo. (2002) Architectural design and
 evaluation of an efficient Web-crawling system. The Journal of Systems and Software, 60(3):
 185-193.
 pages. In Proc. of 10th International World Wide Web Conference, Hong Kong, China,
- Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. (2001) Trova-tore:
 Towards a highly scalable distributed web crawler. In Poster Proc. of Tenth International World
 Wide Web Conference, pages 140-141, Hong Kong, China,
 4th International Conference, FODO'93, volume 730 of Lecture Notes in Computer Science,
- Tushar Deepak Chandra and Sam Toueg. (1996) Unreliable failure detectors for reliable
- Vladislav Shkapenyuk and Torsten Suel. (2002) Design and implementation of a
 high-performance distributed web crawler. In IEEE International Conference on Data
 Engineering (ICDE),.
Design and Implementation of Scalable, Fully Distributed Web Crawler for a Web Search Engine

Index Terms

Computer Science

Information Retrieval

Key words

web search engines
crawling
software architecture