Abstract

This paper proposes a new approach for infrared object localization and tracking with passive infrared sensors (PIR). The hierarchical architecture visibility of Fresnel lens away is presented with modulated field of view (FOV). The FOVs of lens array in sensor node are modulated to achieve a single degree of freedom (DOF). The energy imbalance problem effectively solve with the PIR system. PIR based system saves power consumption and memory space. Passive infrared system detects the change in the radiation of warm blood generation and completely used to turn On the webcam and lighting system.

References

of America 66 (4): 339–341. doi:10.1364/JOSA.66.000339. (subscription required (help)). The
foveal sensitivity to several near-infrared laser wavelengths was measured. It was found that
the eye could respond to radiation at wavelengths at least as far as 1064 nm. A continuous
1064 nm laser source appeared red, but a 1060 nm pulsed laser source appeared green, which
suggests the presence of second harmonic generation in the retina.

Retrieved 12 October 2013. Limits of the eye's overall range of sensitivity extends from about
310 to 1050 nanometers.

October 2013. Normally the human eye responds to light rays from 390 to 760 nm. This can be
extended to a range of 310 to 1,050 nm under artificial conditions.

5. Jump up^ Saidman, Jean (15 May 1933). "Sur la visibilité de l'ultraviolet jusqu'à la
longueur d'onde 3130" [The visibility of the ultraviolet to the wave length of 3130]. Comptes

Universe". p. 23. Cambridge University Press,

7. P. Turaga, R. Chellappa, V. S. Subrahmanian and O. Udrea, “ Machine recognition of
human activities : A Survey „ IEEE Transactions on circuits and systems for video Technology,
vol.18, No.11, pp.1473-1488, 2008.

8. Hernandez and M. Frean, “Bayesian multiple person tracking using probability hypothesis
density smoothing „International Journal on smart sensing and Intelligent system , vol.4, No.2,


10. W. Sen, C. Ying-Wen and X. Ming, “Research of passive infrared wireless sensor

11. X. Zhao-Jun, Z. Peng-Fei and W. Bai-Kun,“ Application of infrared thermal imaging gait

12. R. Poppe,“ A survey on Vision based action recognition „, ” Image and Vision Computing ,
vol.28, No.6, pp.976-990, 2010.

Tracking with wireless distributed pyroelectric sensor, ” IEEE Sensors Journal, vol.6, No.6,

14. J.S. Fang, Q. Hao, D.J. Brady, B.D. Guenther and K.Y. Hsu,“ A pyroelectric infrared
biometric system for real time walker recognition by use of a maximum likelihood principal

15. L. Suk, N.H. Kyang and C.L. Kyang,“ A pyroelectric infrared sensor based indoor location
aware system for the smart home, ” IEEE Transaction on consumer electronics , vol.52, No.4,

16. G. Xue-Bin, Z. Zhi-Qiang and Y. Shi-Wei,“Research of passive infrared sensor model for
wireless sensor networks „, ” Journal of computer applications, vol.27, No.5, pp.1086-1089,
2007.


Index Terms

Computer Science

Information Sciences

Keywords

Passive Infrared Sensors (PIR); Field of View (FOW); style; styling; Degree of Freedom (DOF)