Abstract

This paper proposes an improved version of particle swarm optimization (PSO) algorithm for the training of a neural network (NN). An architecture for the NN trained by PSO (standard PSO, improved PSO) is also introduced. This architecture has a data preprocessing mechanism which consists of a normalization module and a data-shuffling module. Experimental results showed that the NN trained by improved PSO (IPSO) achieved better performance than both the NN trained by standard PSO and the NN trained by back-propagation (BP) algorithm. The effectiveness concerning the recognition rate and the minimum learning error of the data preprocessing modules (normalization module, data-shuffling module) was also demonstrated through the experiments.

References

2. R. H. Nielsen, Theory of the backpropagation neural network, In processing of the
a systematic introduction, Springer-Verlag, 1996
tonimization back-propagation algorithm for feedforward neural network training, Applied
ematics and computation, vol. 185, pp. 10261037, 2007
4. Z.A. Bashir, M.E. El-Hawary, Applying Wavelets to Short-Term Load Forecasting Using
SO-Based Neural Networks, IEEE transactions on power systems, vol. 46, pp. 268-275, 2016
5. A. Suresh, K. V. Harish, N. Radhika, Particle Swarm Optimization over Back Propagation
al Network for Length of Stay Prediction, In processing of the international conference on
formation and communication technologies, vol. 24, no.1, pp. 20-27, 2009
6. V. G. Gudise, G. K. Venayagamoorthy, Comparison of particle swarm optimization and
ackpropagation as training algorithms for neural networks, In processing of 2003 IEEE swarm
elligence symposium, pp. 110-117, 2003
7. M. T. Das, L. C. Dulger, Signature verification (SV) toolbox: Application of PSO-NN,
ingineering applications of artificial intelligence, vol. 22, issue 4-5, pp. 688-694, 2009
8. R. Mendes, et al., Particle swarms for feedforward neural network training, In processing
9. K. W. Chau, Application of a PSO-based neural network in analysis of outcomes of
nger, 2012
11. J. Kennedy, R. Eberhart, Particle swarm optimization, In processing of the IEEE
12. R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and
ources, In processing of the 2001 IEEE international conference on congress on evolutionary
putation, vol. 1, pp. 81-86, 2001
13. Y. Shi and R. Eberhart, Empirical study of particle swarm optimization, In processing of
ternational conference on evolutionary computation, pp. 1945-1950, 1999
14. J. Han, M. Kamber, J. Pei, Data mining: concepts and techniques, 3rd edn, Morgan
aufmann, 2011
pted Sep. 03 2016
16. E. Orhan, A. C. Tanrikulu, A. Abakay, F. Temurtasa, An approach based on probabilistic
81, 2012

Index Terms
- Computer Science
- Algorithms
Keywords

Normalization, Data shuffling, Neural network, Particle swarm optimization, C language