Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Estimation and Prediction for Pareto Distribution under Type-II Progressive Hybrid Censoring Scheme

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
M. M. Mohie El-Din, A. Sadek, Marwa M. Mohie El-Din, M. Nagy

Mohie M M El-Din, A Sadek, Marwa Mohie M El-Din and M Nagy. Estimation and Prediction for Pareto Distribution under Type-II Progressive Hybrid Censoring Scheme. International Journal of Computer Applications 155(10):9-15, December 2016. BibTeX

	author = {M. M. Mohie El-Din and A. Sadek and Marwa M. Mohie El-Din and M. Nagy},
	title = {Estimation and Prediction for Pareto Distribution under Type-II Progressive Hybrid Censoring Scheme},
	journal = {International Journal of Computer Applications},
	issue_date = {December 2016},
	volume = {155},
	number = {10},
	month = {Dec},
	year = {2016},
	issn = {0975-8887},
	pages = {9-15},
	numpages = {7},
	url = {},
	doi = {10.5120/ijca2016912438},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}


In this paper, the maximum likelihood and Bayesian estimation are developed based on Type-II progressive hybrid censoring scheme from the Pareto distribution. One and two-sample Bayesian prediction is also discussed using Type-II progressive hybrid censoring scheme. Finally, numerical example is presented for illustrating all the inferential procedures developed here.


  1. Aggarwala, R., & Balakrishnan, N. (1998). Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation. Journal of statistical planning and inference, 70(1), 35-49.
  2. Raqab, M. Z., Asgharzadeh, A., & Valiollahi, R. (2010). Prediction for Pareto distribution based on progressively Type-II censored samples. Computational Statistics & Data Analysis, 54(7), 1732-1743.
  3. Balakrishnan, N., & Cohen, A. C. (2014). Order statistics & inference: estimation methods. Elsevier
  4. Childs, A., Chandrasekar, B., Balakrishnan, N., & Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55(2), 319-330.
  5. Pareto, V., (1897). Cours d'Economie Politique. Rouge et Cie, Paris.
  6. Davis, H. T., & Feldstein, M. L. (1979). The generalized Pareto law as a model for progressively censored survival data. Biometrika, 66(2), 299-306.
  7. Cohen, A. C., & Whitten, B. J. (1988). Parameter estimation in reliability and life span models. M. Dekker.
  8. Grimshaw, S. D. (1993). Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics, 35(2), 185-191
  9. Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 1972(2), 170-178
  10. Arnold, B. C., & Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84(408), 1079-1084.
  11. Basak, I., Basak, P., & Balakrishnan, N. (2006). On some predictors of times to failure of censored items in progressively censored samples. Computational statistics & data analysis, 50(5), 1313-1337.
  12. Balakrishnan, N., Childs, A., & Chandrasekar, B. (2002). An efficient computational method for moments of order statistics under progressive censoring. Statistics & probability letters, 60(4), 359-365.
  13. Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: theory, methods, and applications. Springer Science & Business Media.


Bayesian estimation, Bayesian prediction, Pareto distribution, Maximum likelihood estimation, Type-II progressive hybrid censoring sample