Abstract

Wireless Sensor Networks (WSNs) present myriad application opportunities for several applications areas such as precision agriculture, environmental monitoring, traffic control, industrial process monitoring and control, home automation and mission-critical applications such as military surveillance, healthcare applications, disaster relief and management, fire detection applications among others.

Since WSNs are used in mission-critical tasks, security is an essential requirement. An adversary can easily compromise sensor nodes due to unique constraints inherent in WSNs such as limited sensor node energy, limited computational and communication capabilities and the hostile deployment environments. These WSNs unique challenges render existing traditional security schemes used in traditional networks inadequate and inefficient. An adversary may take control of some sensor nodes and use them to inject false data with the aim of misleading the network’s operator (Byzantine attack). It is therefore critical and crucial to detect and isolate malicious nodes so as to prevent attacks that can be launched from these
nodes and more importantly avoid being misled by incorrect falsified information introduced by the adversary. This research explores and gives emphasis on improving Weighted Trust Evaluation (WTE) as a technique for detecting and isolating these malevolent nodes. Extensive simulation is performed using MATLAB in which the results show the proposed enhanced WTE based algorithm has the ability to detect and isolate malicious nodes; both malicious sensor nodes and malicious forwarding nodes in WSNs at a reasonable detection rate and short response time whilst achieving good scalability.

References

15. Y. Yang, X. Wang, S. Zhu and G. Cao, Distributed Software-based Attestation for Node Compromise Detection in Sensor Networks, in 26th IEEE International Symposium on Reliable
Enhanced Weighted Trust Evaluation Scheme for Detection of Malicious Nodes in Wireless Sensor Networks


Index Terms

Computer Science Wireless

Keywords

Weighted Trust Evaluation, Malicious nodes, Malicious Nodes Detection Techniques, Wireless Sensor Networks Security