Call for Paper - January 2024 Edition
IJCA solicits original research papers for the January 2024 Edition. Last date of manuscript submission is December 20, 2023. Read More

A Comparative Analysis of Virtual Machine Placement Techniques in the Cloud Environment

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
Bhavesh Gohil, Sanjana Shah, Yash Golechha, Dhiren Patel
10.5120/ijca2016912530

Bhavesh Gohil, Sanjana Shah, Yash Golechha and Dhiren Patel. A Comparative Analysis of Virtual Machine Placement Techniques in the Cloud Environment. International Journal of Computer Applications 156(14):12-18, December 2016. BibTeX

@article{10.5120/ijca2016912530,
	author = {Bhavesh Gohil and Sanjana Shah and Yash Golechha and Dhiren Patel},
	title = {A Comparative Analysis of Virtual Machine Placement Techniques in the Cloud Environment},
	journal = {International Journal of Computer Applications},
	issue_date = {December 2016},
	volume = {156},
	number = {14},
	month = {Dec},
	year = {2016},
	issn = {0975-8887},
	pages = {12-18},
	numpages = {7},
	url = {http://www.ijcaonline.org/archives/volume156/number14/26785-2016912530},
	doi = {10.5120/ijca2016912530},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

Cloud computing is a novel paradigm that aims to provision on-demand computing capacities as services. Virtualization is an important technology integrated in Cloud Computing. Mapping the virtual machines to the appropriate physical machines is called VM placement. The effectiveness and elasticity of virtual machine placement has become the main concern in cloud computing environments. Effective placement of virtual machines is important for optimization of computational resources and reduction of the probability of virtual machine reallocation. This paper provides a survey and brief analysis of some of the main VM Placement mechanism utilized in cloud computing.

References

  1. Zhou, Z., Hu, Z., & Li, K. (2016). Virtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers. Scientific Programming, 2016, 1-11. doi:10.1155/2016/5612039
  2. Calcavecchia, N. M., Biran, O., Hadad, E., & Moatti, Y. (2012). VM Placement Strategies for Cloud Scenarios. 2012 IEEE Fifth International Conference on Cloud Computing. doi:10.1109/cloud.2012.113
  3. Thiruvenkadam, T., & Kamalakkannan, P. (2015). Energy Efficient Multi-Dimensional Host Load Aware Algorithm for Virtual Machine Placement and Optimization in Cloud Environment. Indian Journal of Science and Technology, 8(17). doi:10.17485/ijst/2015/v8i17/59140
  4. Zhou, Z., Hu, Z., Song, T., & Yu, J. (2015). A novel virtual machine deployment algorithm with energy efficiency in cloud computing. Journal of Central South University, 22(3), 974-983. doi:10.1007/s11771-015-2608-5
  5. Ma, F., Liu, F., & Liu, Z. (2012). Distributed load balancing allocation of virtual machine in cloud data center. 2012 IEEE International Conference on Computer Science and Automation Engineering. doi:10.1109/icsess.2012.6269396
  6. Sheikhalishahi, M., Wallace, R. M., Grandinetti, L., Vazquez-Poletti, J. L., & Guerriero, F. (2016). A multi-dimensional job scheduling. Future Generation Computer Systems, 54, 123-131. doi:10.1016/j.future.2015.03.014
  7. Amarante, S. R., Roberto, F. M., Cardoso, A. R., & Celestino, J. (2013). Using the Multiple Knapsack Problem to Model the Problem of Virtual Machine Allocation in Cloud Computing. 2013 IEEE 16th International Conference on Computational Science and Engineering. doi:10.1109/cse.2013.77
  8. Bin-Packing. (n.d.). SpringerReference. doi:10.1007/springerreference_5277
  9. Malviya, P., Agrawal, S., & Singh, S. (2014). An Effective Approach for Allocating VMs to Reduce the Power Consumption of Virtualized Cloud Environment. 2014 Fourth International Conference on Communication Systems and Network Technologies. doi:10.1109/csnt.2014.121
  10. Ni, J., Huang, Y., Luan, Z., Zhang, J., & Qian, D. (2011). Virtual machine mapping policy based on load balancing in private cloud environment. 2011 International Conference on Cloud and Service Computing. doi:10.1109/csc.2011.6138536
  11. Hamdi, K., & Kefi, M. (2016). Network-aware virtual machine placement in cloud data centers: An overview. 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). doi:10.1109/iccsii.2016.7462398
  12. Chowdhury, M. R., Mahmud, M. R., & Rahman, R. M. (2015). Study and performance analysis of various VM placement strategies. 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). doi:10.1109/snpd.2015.7176234
  13. Masdari, M., Nabavi, S. S., & Ahmadi, V. (2016). An overview of virtual machine placement schemes in cloud computing. Journal of Network and Computer Applications, 66, 106-127. doi:10.1016/j.jnca.2016.01.011
  14. Li, X., Qian, Z., Lu, S., & Wu, J. (2013). Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Mathematical and Computer Modelling, 58(5-6), 1222-1235. doi:10.1016/j.mcm.2013.02.003
  15. Li, K., Zheng, H., & Wu, J. (2013). Migration-based virtual machine placement in cloud systems. 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet). doi:10.1109/cloudnet.2013.6710561
  16. Usmani, Z., & Singh, S. (2016). A Survey of Virtual Machine Placement Techniques in a Cloud Data Center. Procedia Computer Science, 78, 491-498. doi:10.1016/j.procs.2016.02.093
  17. Pires, F. L., Melgarejo, E., & Baran, B. (2013). Virtual machine placement. A multi-objective approach. 2013 XXXIX Latin American Computing Conference (CLEI). doi:10.1109/clei.2013.6670671
  18. Choudhary, A., Rana, S., & Matahai, K. (2016). A Critical Analysis of Energy Efficient Virtual Machine Placement Techniques and its Optimization in a Cloud Computing Environment. Procedia Computer Science, 78, 132-138. doi:10.1016/j.procs.2016.02.022
  19. Zheng, X., & Cai, Y. (2014). Dynamic Virtual Machine Placement for Cloud Computing Environments. 2014 43rd International Conference on Parallel Processing Workshops. doi:10.1109/icppw.2014.28
  20. Mills, K., Filliben, J., & Dabrowski, C. (2011). Comparing VM-Placement Algorithms for On-Demand Clouds. 2011 IEEE Third International Conference on Cloud Computing Technology and Science. doi:10.1109/cloudcom.2011.22.
  21. Zeng, H., Zeng, H., He, T., & Zhang, N. (2013). Virtual machine placement and optimization for data center. Journal of Computer Applications, 33(10), 2772-2777. doi:10.3724/sp.j.1087.2013.02772

Keywords

Virtual Machine Placement, Constraint Programming, Stochastic Integer Programming, Bin Packing, Genetic Algorithm, Cloud computing, Performance evaluation