Abstract

There are few studies on evaluation of Learning Management Systems (LMS) within higher educational organizations. Moreover, most of earlier studies have many shortages in its evaluation methods. For example, it focuses on the unilateral view of the evaluation method; it doesn’t show weights for each different criterion effecting LMS and doesn’t rank its importance. This research proposes an evaluation criteria model that avoids all shortcomings on earlier studies as follows: By evaluating the LMS on multidimensional way, discovering new relations between different criteria, determining weights for each criterion and ranking most critical criteria effecting on LMS. The evaluation criteria consist of six dimensions technology, system and service quality, communication, effectiveness of content, instructors and students dimensions. Each dimension encompasses of set of other criteria. A survey questionnaire based on these evaluation criteria and its relations has been applied to 100 learners of the British university of Egypt, 125 learners on Helwan University and set of instructors at both universities. Then, verifying questions by holding a meeting with set of experts. Descriptive statistics were run to
analyze the collection of data, delete outlier of it and test data reliability. Collective of Artificial
intelligence (AI) methods are used for ranking each criterion and Dempster-Shafer theory is
used to compare between different results of AI for obtaining the most critical ten ranking criteria
based on achieving satisfaction for both students and instructors. The results of research
showing that communication dimension, responsiveness and availability of instructors on LMS
and degree of interactive courses are the highest three critical criteria for British university. It
also sheds light on the attitude of instructors and students towards technology in addition to the
easy access of any services or content and responsiveness of instructors on Helwan University.

References

1285–1296.
Multi-Dimensional Criteria Model for Evaluating E-learning Systems Efficiency in the Higher
1
system: A methodology based on learner satisfaction and its applications. Computers
system: A methodology based on learner satisfaction and its applications. Computers
Press
6. Chen, Sheng, Xia Hong and Chris J. Harris, "Orthogonal Forward Selection for
Constructing the Radial Basis Function Network with Tunable Nodes", 2005.
7. Cristianini, Nello and John Shawe-Taylor: An Introduction to Support Vector Machines
Cognitive Science, University of Edinburgh, Scotland.
Artificial Intelligence, 2nd Edition. Springer-Verlag--Studies in computational intelligence 21,
2006.
11. The Dempster-Shafer Theory of Belief Functions for Managing Uncertainties: An
Introduction and Fraud Risk Assessment Illustration Australian Accounting Review, Volume 21,
Issue 3, pp. 282–291
Hillsdale NJ: Erlbaum.
E-learning tools evaluation and roadmap development for an electrical utility. Journal of
Theoretical and Applied Electronic Commerce Research (JTAER), 2(1), 63–75
services as a requirement for e-learning system success", Computers & Education 69 (2013) 431–451


22. Dr. goldi puri (2012) critical success factors in e-learning – an empirical study. international journal of multidisciplinary research.vol.2 issue 1, January 2012, iss 2231 5780


Index Terms
Keywords

E-learning - ranking criteria - e-learning evaluation - system Quality - Egyptian universities