Call for Paper - November 2023 Edition
IJCA solicits original research papers for the November 2023 Edition. Last date of manuscript submission is October 20, 2023. Read More

A Multilevel Inverter System for an Induction Motor with Open-Ended Windings

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2017
Authors:
V. Srinath, Man Mohan, D. K. Chaturvedi
10.5120/ijca2017913528

V Srinath, Man Mohan and D K Chaturvedi. A Multilevel Inverter System for an Induction Motor with Open-Ended Windings. International Journal of Computer Applications 163(10):6-13, April 2017. BibTeX

@article{10.5120/ijca2017913528,
	author = {V. Srinath and Man Mohan and D. K. Chaturvedi},
	title = {A Multilevel Inverter System for an Induction Motor with Open-Ended Windings},
	journal = {International Journal of Computer Applications},
	issue_date = {April 2017},
	volume = {163},
	number = {10},
	month = {Apr},
	year = {2017},
	issn = {0975-8887},
	pages = {6-13},
	numpages = {8},
	url = {http://www.ijcaonline.org/archives/volume163/number10/27429-2017913528},
	doi = {10.5120/ijca2017913528},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

The objective of this paper is to present a multilevel inverter topology for induction motor with open-end winding. Multi level inversion is achieved by feeding an open-end winding induction motor with a two-level inverter in cascade with three auxiliary circuits from one end and a single two-level inverter from the other end of the motor. The combined inverter and auxiliary system with open-end winding induction motor produces voltage space-vector location identical to five-level inverter. The proposed inverter drive scheme was simulated for different type of loads and also with sudden changes in the load. It is also capable of producing a multilevel pulse width modulation (PWM) waveform to a five level depending on the modulation range. The proposed topology has been simulated using MATLAB/SIMULINK with satisfactory results.

References

  1. N. S. Choi, J. G. Cho, and G. H. Cho, “A general circuit topology of multilevel inverter,” in Proc. IEEE PESC’98, Cambridge, MA, 1998,pp. 96–103.
  2. P. M. Bhagwatet al., “Generalized structure of a multilevel PWM inverter,” IEEE Trans. Ind. Applicat., vol. 19, pp. 1057–1069, Nov./Dec.1983
  3. G. S. Buja, “Optimum waveforms in PWM inverters,” IEEE Trans. Ind.Applicat., vol. IA-16, p. 830, Nov./Dec. 1980.
  4. G. B. Kliman, A.B.Plunkett, “Development of a modulation strategy for a PWM inverter drive,” IEEE Trans. Ind. Applicat., vol. IA-15, pp. 72–79, Jan./Feb. 1979.
  5. M. A. Boost and P. D. Ziogas, “Toward a zero-output impedance UPS system,” IEEE Trans. Ind. Applicat., vol. 25, pp. 408–418, May/June 1989.
  6. T. Kawabata, T. Miyashita, and Y. Yamamoto, “Dead-beat control of three phase PWM inverter,” IEEE Trans. Power Electron., vol. 5, Jan. 1990.
  7. J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.
  8. L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
  9. M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, “A survey on cascaded multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2197–2206, 2010.
  10. V. G. Agelidis, D. M. Baker,W. B. Lawrance, and C. V. Nayar, “A multilevel PWM inverter topology for photovoltaic applications,” in Proc.IEEE ISIE’97, Guimaraes, Portugal, 1997, pp. 589–594.
  11. P. Cortes, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu- Rub,“ Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. on Industrial Electronics, vol. 57, no. 8, pp. 2691–2699, 2010.
  12. J. Dixon, J. Pereda, C. Castillo, and S. Bosch, “Asymmetrical multilevel inverter for traction drives using only one DC supply,” IEEE Trans. on Vehicular Technology, vol. 59, no. 8, pp. 3736–3743, 2010.
  13. T. Zumwalt, “DSP applications in the control of uninterruptible power supplies,” in Proc. ICSPAT’93 Conf., 1993, pp. 967–972.
  14. M. Calais, L. J. Borle, and V. G. Agelidis, “Analysis of multicarrier PWM methods for a single-phase five level inverter,” in Proc. IEEE PESC’01, Vancouver, BC, Canada, 2001, pp. 1351–1356.
  15. Manjrekar, M.D., and Lipo, T.A.: ‘A hybrid multilevel inverter topology for drive applications’. Proc. 13th IEEE Conf. on Applied power electronics (APEC), California, Feb 1998, pp. 523–529.
  16. Menzies, R.W., Steimer, P., and Steinke, J.K.: ‘Five-level GTO inverters for large induction motor drives’. Proc. IEEE Ind. Appl.Soc. Annual Meeting, Toronto, 2–8 October 1993, pp. 595–601.
  17. Shivakumar, E.G., Gopakumar, K., and Ranganathan, V.T.:‘Space vector PWM control of dual inverter-fed open-end winding induction motor drive’, EPE J., 2002, 12, (1), pp. 9–18.
  18. M.R. Baiju, K. Gopakumar, K.K. Mohapatra, V.T. Somasekhar and L. Umanand, “Five-level inverter voltage-space phasor generation for an open-end winding induction motor drive”,IEE Proc.-Electr. Power Appl., Vol. 150, No. 5, September 2003.
  19. G. Mondal, K. Gopakumar, P. N. Tekwani, and E. Levi, “A reduced- switch-count five-level inverter with common-mode voltage elimina- tion for an open-end winding induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2344–2351, Aug. 2007.
  20. V. T. Somasekhar, K. Gopakumar, M. R. Baiju, K. K. Mohapatra, and L. Umanand, “A multilevel inverter system for an induction motor with open-end windings,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 824–836, Jun. 2005.
  21. K. Sivakumar, Anandarup Das, RijilRamchand, Chintan Patel, and K. Gopakumar, “A hybrid multilevel inverter topology for an open-end winding induction-motor drive using two-level inverters in series with a capacitor-fed H-bridge cell,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3707–3714, Nov. 2010.
  22. P. P. Rajeevan, K. Sivakumar, Chintan Patel, RijilRamchand, and K. Gopakumar, “A seven-level inverter topology for induction motor drive using two-level inverters and floating capacitor fed h-bridges,” IEEE Trans.Power Electron., vol. 26, no. 6, pp. 1733–1740, Jun. 2011.
  23. P. N. Tekwani, R. S. Kanchan, and K. Gopakumar, “A dual five-level inverter-fed induction motor drive with common-mode voltage elimina- tion and DC-link capacitor voltage balancing using only the switching- state redundancy—Part I,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2600–2608, Oct. 2007.
  24. P. N. Tekwani, R. S. Kanchan, and K. Gopakumar, “A dual five-level inverter-fed induction motor drive with common-mode voltage elimina- tion and dc-link capacitor voltage balancing using only the switching- state redundancy—Part II,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2609–2617, Oct. 2007.
  25. E. Babaei, “A cascade multilevel converter topology with reduced number of switches,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2657–2664, Nov. 2008.
  26. S. J. Park, F. S. Kang, M. H. Lee, and C. U. Kim, “A new single-phase five level PWM inverter employing a deadbeat control scheme,” IEEE Trans.Power Electron., vol. 18, no. 18, pp. 831–843, May 2003.
  27. Zhong Du, Member, Leon M. Tolbert, BurakOzpineci, and John N. Chiasson, “Fundamental frequency switching strategies of a seven-level hybrid cascaded h-bridge multilevel inverter,” IEEE Trans.Power Electron., vol. 24, no. 1, pp. 25–33, Jan. 2009.
  28. P. Giroux and G. Sybille, “power_3phPWM3level.mdl” SIMULINK demos of MATLAB R2011A, version 7.12.

Keywords

Auxiliary circuit, Induction motor, multilevel inverters, open-end winding, pulse width-modulation strategy.