Abstract

Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and in particular, to elliptic curve groups. The resulting public – key systems provide relatively small block size, high speed, and high security. This paper identified an efficient performance of concurrent algorithm using complementary recoding over

References


Index Terms

Computer Science

Applied Mathematics

Keywords

Secret sharing, Elliptic Curve Cryptography (ECC),