CFP last date
20 September 2024
Reseach Article

Multiple Video Instance Detection and Retrieval using Spatio-Temporal Analysis using Semi Supervised SVM Algorithm

by R. Kousalya, S. Dharani
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 163 - Number 4
Year of Publication: 2017
Authors: R. Kousalya, S. Dharani
10.5120/ijca2017913495

R. Kousalya, S. Dharani . Multiple Video Instance Detection and Retrieval using Spatio-Temporal Analysis using Semi Supervised SVM Algorithm. International Journal of Computer Applications. 163, 4 ( Apr 2017), 12-19. DOI=10.5120/ijca2017913495

@article{ 10.5120/ijca2017913495,
author = { R. Kousalya, S. Dharani },
title = { Multiple Video Instance Detection and Retrieval using Spatio-Temporal Analysis using Semi Supervised SVM Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2017 },
volume = { 163 },
number = { 4 },
month = { Apr },
year = { 2017 },
issn = { 0975-8887 },
pages = { 12-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume163/number4/27382-2017913495/ },
doi = { 10.5120/ijca2017913495 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:09:14.367468+05:30
%A R. Kousalya
%A S. Dharani
%T Multiple Video Instance Detection and Retrieval using Spatio-Temporal Analysis using Semi Supervised SVM Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 163
%N 4
%P 12-19
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Object instance search aims to not solely retrieve the pictures or frames that contain the query, however additionally find all its occurrences. During this work, we tend to explore the utilization of spatio-temporal cues to enhance the standard of object instance search from videos. To the present finish, the work to formulate this drawback because the spatio-temporal trajectory search downside, wherever a trajectory may be a sequence of bounding boxes that find the thing instance in every frame. The goal is to seek out the top- trajectories that are possible to contain the target object. The work tends to solve the key bottleneck in applying the approach to object instance search by leverage a randomized approach to change quick marking of any bounding boxes within the video volume.

References
  1. Boltz S., Debreuve E., Barlaud M. “High-Dimensional Statistical Measure for Region-of-Interest Tracking”, IEEE Trans. Image Processing, vol. 55, pp. 1731-1737, 2009
  2. G.G. Medioni, I. Cohen, F. Bre´mond, S. Hongeng, and R. Nevatia, “Event Detection and Analysis from Video Streams”
  3. Garcia-Garcia D., Hernandez E.P., Diaz de Maria F. “A New Distance Measure for Model-Based Sequence Clustering” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31 pp.1325-1331, 2009
  4. Heng Tao Shen, Jie Shao, Zi Huang, Xiaofang Zhou “Effective and Efficient Query Processing for Video Subsequence Identification” IEEE Trans. on Knowledge and Data Engineering, vol.21 pp. 321-334 2009
  5. Heung S, Zakhor “A Efficient video similarity measurement with video signature”. IEEE Trans. on Circuits and Systems for Video Technology, vol.13 pp.59-74 2003
  6. J. Fan, W. Aref, A. Elmagarmid, M. Hacid, M. Marzouk, and X. Zhu, “Multiview: Multilevel Video Content Representation and Retrieval”
  7. JingjingMeng, Junsong Yuan, Jiong Yang, Gang Wang, and Yap-Peng Tan, “ Object Instance Search in Videos via Spatio-Temporal Trajectory Discovery”
  8. Kwang-deokSeo, Seong Park, Soon-heung Jung, “Wipe scene-change detector based on visual rhythm spectrum” IEEE Trans. Consumer Electronics. vol.55 pp.831-838 2009
  9. L. Bai, S.Y. Lao, G. Jones, and A.F. Smeaton, “Video Semantic Content Analysis Based on Ontology”
  10. M. Ko¨pru¨ lu¨, N.K. Cicekli, and A. Yazici, “Spatio-Temporal Querying in Video Databases”
  11. M. Petkovic and W. Jonker, “An Overview of Data Models and Query Languages for Content-Based Video Retrieval”
  12. M. Petkovic and W. Jonker, “Content-Based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events”
  13. Meng Wang, Xian-Sheng Hua, Jinhui Tang, Richang Hong. “Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation” IEEE Trans. Multimedia vol. 11, pp. 465-476, 2009
  14. S. Hongeng, R. Nevatia, and F. Bre´mond, “Video-Based Event Recognition: Activity Representation and Probabilistic Recognition Methods”
  15. T. Sevilmis, M. Bastan, U. Gu¨du¨ kbay, and O ¨ .Ulusoy, “Automatic Detection of Salient Objects and Spatial Relations in Videos for a Video Database System”
  16. Xuefeng Pan, Jintao L, Yongdong Zhang,, Sheng Tang, Lejun Y, “Format-Independent Motion Content Description based on Spatiotemporal Visual Sensitivity” IEEE Trans. Consumer Electronics. vol.53 pp.769-774 2007
  17. YakupYildirim, Adnan Yazici, TurgayYilmaz, “Automatic Semantic Content Extraction in Videos Using a Fuzzy Ontology and Rule-Based Model”
  18. Yan Ke Rahul Sukthankar Larry Huston “An efficient parts-based near duplicate and sub-image retrieval system” Proc. of the 12th annual ACM international conference on Multimedia pp.869-876 2004
  19. Yang X, Tian Qi, Chang E-C “A color fingerprint of video shot for content identification” Proc. of the 12th annual ACM int’l conf. on Multimedia pp.276-279 2004
  20. YueGaoWeibo Wang, Junhai Yong. “A video summarization tool using two-level redundancy detection for personal video recorders”, IEEE Trans. Consumer Electronics.vol.54 pp.521-526 2008
Index Terms

Computer Science
Information Sciences

Keywords

Key-point localization SIFT descriptor Orientation Assignment Key-points descriptors Scale-space extrema detection.