Call for Paper - November 2020 Edition
IJCA solicits original research papers for the November 2020 Edition. Last date of manuscript submission is October 20, 2020. Read More

Pairwise Soft Connected in Soft Bitopological Spaces

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2017
Authors:
Ali Kandil, Osama El-Tantawy, Sobhy El-Sheikh, Shawqi Ahmed Hazza
10.5120/ijca2017914614

Ali Kandil, Osama El-Tantawy, Sobhy El-Sheikh and Shawqi Ahmed Hazza. Pairwise Soft Connected in Soft Bitopological Spaces. International Journal of Computer Applications 169(11):12-27, July 2017. BibTeX

@article{10.5120/ijca2017914614,
	author = {Ali Kandil and Osama El-Tantawy and Sobhy El-Sheikh and Shawqi Ahmed Hazza},
	title = {Pairwise Soft Connected in Soft Bitopological Spaces},
	journal = {International Journal of Computer Applications},
	issue_date = {July 2017},
	volume = {169},
	number = {11},
	month = {Jul},
	year = {2017},
	issn = {0975-8887},
	pages = {12-27},
	numpages = {16},
	url = {http://www.ijcaonline.org/archives/volume169/number11/28028-2017914614},
	doi = {10.5120/ijca2017914614},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

In this paper, we introduce the notion of p -separated soft sets based on the soft space (X, η12, E) which generate by soft bitopological space (X, η1, η2. E) and study some of its properties. Based on this notion we introduce the notions of p -soft connected(disconnected) spaces and study some of their characterizations and properties. Also, we study the connected of p -soft sets by using the soft space (X, η12, E). Some examples have given to support these concepts.

References

  1. M. Al-Khafaj and M. Mahmood, Some properties of soft connected spaces and soft locally connected spaces, IOSR Journal of Mathematics 10 (5) (2014), 102107.
  2. A. Aygunoglu and H. Aygun, Some notes on soft topological spaces, Neural Comput. Applic. 21 (Suppl 1) (2012) S113S119.
  3. S. Das and S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6 (2013) 7794.
  4. S. A. El-Sheikh, Dimension Theory of Bitopological Spaces, Master Thesis, Ain Shams University, Cairo, Egypt, 1987.
  5. S. A. El-Sheikh and A. M. Abd El-latif, Decompositions of some types of supra soft sets and soft continuity, International Journal of Mathematics Trends and Technology 9 (1) (2014) 3756.
  6. D. N. Georgiou a and A. C. Megaritis, Soft set theory and topology, Appl. Gen. Topol. 15 (1) (2014) 93109.
  7. H. Hazra, P. Majumdar and S. K.Samanta, Soft topology, Fuzzy Inform. Eng. 4 (1) (2012) 105115.
  8. S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 40584067.
  9. M. Irfan Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl. 61 (2011) 26472654.
  10. B. M. Ittanagi, Soft bitopological spaces, International journal of Computer Applications 107 (7) (2011) 14.
  11. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, Generalized pairwise closed soft sets and the associate pairwise soft separation axioms, South Asian J. Math. 6 (2) (2016) 4357.
  12. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, On pairwise -open soft sets and pairwise locally closed soft sets, American Scientific Research Journal for Engineering, Technology, and Sciences 28 (1) (2017) 225247.
  13. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, Pairwise open (closed) soft sets in a soft bitopological spaces, Ann. Fuzzy Math. Inform. 11 (4) (2016) 571588.
  14. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, Pairwise soft separation axioms in soft bitopological spaces, Ann. Fuzzy Math. Inform. 13 (5) (2017) 563577.
  15. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, Some types of pairwise soft sets and the associated soft topologies, Journal of Intelligent and Fuzzy Syst 32 (2) (2017) 10071018.
  16. A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and Shawqi A. Hazza, Some types of pairwise soft open (continuous) mappings and some related results, South Asian J. Math. 7 (2) (2017) 121.
  17. A. Kharal and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput. 7 (3) (2011) 471481.
  18. P. Majumdar and S. K. Samanta, On soft mappings, Comput. Math. Appl. 60 (2010) 26662672.
  19. D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 1931.
  20. Sk. Nazmul and S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6 (1) (2013) 115.
  21. Sk. Nazmul and S. K. Samanta, Some properties of soft topologies and group soft topologies, Ann. Fuzzy Math. Inform. 8 (4) (2014) 645661.
  22. Ningxin Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy. Math. inform. 10 (2) (2015) 309322.
  23. E. Peyghan, B. Samadi and A. Tayebi, About soft topological spaces, Journal of New Results in Science 2 (2013) 6075.
  24. E. Peyghan, B. Samadi and A. Tayebi, On soft connectedness arXiv 1202.1668v1,math.GN,(2012).
  25. D. Pie and D. Miao, From soft sets to information systems, Granular computing, IEEE Inter. Conf. 2 (2005) 617621.
  26. M. Shabir and M. Naz, On soft toplogical spaces, Comput. Math. Appl. 61 (7) (2011) 17861799.
  27. I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 3 (2) (2012) 171185.
  28. I. Zorlutuna and H. Çakir, On continuity of soft mapping, Appl. Math. Inf. Sci. 1 (9) (2015) 403409.

Keywords

Soft set; Soft topology; Soft bitopological spaces;