Abstract

Cryptography is one of the major elements in data security and communication security. It is a technique of securing the communication by preventing third parties. A hybrid cryptosystem is the special set of rules using multiple ciphers or a combination of a series of well-defined steps that can be followed as a procedure of different types together by taking best advantage of each cipher. In this cryptosystem, a random secret key is generated used as a symmetric cipher which is required for all parties. Then the system encrypts this key via an asymmetric cipher using the recipient's public key. DNA cryptography is a new optimistic field in cryptography which hides the data in terms of DNA sequence to make it secured. The OTP (one-time pad) is an encryption technique in which a plaintext is paired with a one-time pre-shared key which is equal to or longer than the size of the message being sent. In RSA, a public key is used for encryption which specifies the transformation of plaintext into ciphertext and this encryption key differs from the decryption key which is kept private to secure data transmission. In this paper, a hybrid cryptosystem is proposed using DNA, the generic OTP technique and RSA to ensure high security in three levels. This method is very efficient for encrypting data, hiding text and
preventing attacks.

References

1. ^a b c "Intro to Numbers Stations". Retrieved 13 September 2014.
 Retrieved 2014-03-17.
5. Cameron, P.J.: Notes on cryptography (2003),
 Computation to the data encryption standard. Journal of Computational Biology 6, 53–63
 (1999).
10. Hirabayashi, M., Kojima, H., Oiwa, K.: Effective Algorithm to Encrypt Information Based
12. Tausif Anwer, Abhishek Kumar, Sanchita Paul: DNA Cryptography Based on Symmetric
 938 – 950.
13. Shreyas Chavan: DNA Cryptography based on DNA Hybridization and One Time Pad
 2013, pp. 2679-2682.

Index Terms

Computer Science

Security

Keywords
DNA, One Time Pad, RSA.