Abstract

In this paper we consider the following problem: Given a set \(n \) shops of Store1 in the plane \(P \) than how many minimum shops of Store2 to be open for the maximum coverage and interference Store1 Shops. The problem is solve using the Stabbing disk induced by points on the plane \(P \). For a point set \(P \), where no two points have the same \(x \) or \(y \) coordinates, derive an upper bound on the size of the stabbing set of \(n/2 \) axis-parallel rectangles induced by each pair of points \(a, b \in P \) as the diagonal of the rectangles. For a point set \(P \) in convex position, derive a lower bound on the size of the stabbing set \(n/2 \) axis-parallel rectangles induced by each pair of points \(a, b \in P \) as the diagonal of the rectangles.

References

Index Terms

Computer Science

Applied Sciences

Keywords

Stabbing, Proximity Graph, Gabriel Graphs, Triangulation, Neighborliness, Convex hull, rectangle stabbing.