Call for Paper - November 2022 Edition
IJCA solicits original research papers for the November 2022 Edition. Last date of manuscript submission is October 20, 2022. Read More

A Spatio-temporal Stochastic Model for an Emerging Plant Disease Spread in a Heterogeneous Landscape

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2021
Authors:
Clara Landry, Catherine Abadie, Franc
10.5120/ijca2021921051

Clara Landry, Catherine Abadie, Franc¸ois Bonnot and Jean Vaillant. A Spatio-temporal Stochastic Model for an Emerging Plant Disease Spread in a Heterogeneous Landscape. International Journal of Computer Applications 174(16):1-7, January 2021. BibTeX

@article{10.5120/ijca2021921051,
	author = {Clara Landry and Catherine Abadie and Franc¸ois Bonnot and Jean Vaillant},
	title = {A Spatio-temporal Stochastic Model for an Emerging Plant Disease Spread in a Heterogeneous Landscape},
	journal = {International Journal of Computer Applications},
	issue_date = {January 2021},
	volume = {174},
	number = {16},
	month = {Jan},
	year = {2021},
	issn = {0975-8887},
	pages = {1-7},
	numpages = {7},
	url = {http://www.ijcaonline.org/archives/volume174/number16/31757-2021921051},
	doi = {10.5120/ijca2021921051},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

Black Leaf Streak Disease (BLSD) is the most severe foliar disease of banana and plantain. BLSD is caused by Pseudocercospora fijiensis , an ascomycete fungus which produces wind-borne spores responsible for its spatial dispersal. In order to evaluate the BLSD long-distance dispersal and to better understand the effect of environmental factors on its invasive spatial spread, a spatiotemporal study was set up during the recent BLSD invasion in the Martinique island (FWI). Disease detection was carried out from September 2010 to May 2012 and sampling squares were defined from a regular spatial grid built over the island. In this paper, we consider a stochastic model of spatio-temporal propagation of BLSD in an heterogeneous landscape and we present mathematical and computational results for this continuous-time model. Statistical inference of parameters is carried out from presence-absence data using a Bayesian framework based on a data augmentation method with respect to square first colonization times. Parameter posterior distribution calculations made possible the evaluation of the BLSD longdistance dispersal and land-cover influence on the disease propagation. Our results enabled the reenactment of the invasion.

References

  1. A.F. Amil, S.P. Heaney, C. Stanger, and M. W. Shaw. Dynamics of QoI sensitivity in Mycosphaerella fijiensis in Costa Rica during 2000 to 2003. Phytopathology, 2007.
  2. Pamela K. Anderson, Andrew A. Cunningham, Nikkita G. Patel, Francisco J. Morales, Paul R. Epstein, and Peter Daszak. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10):535 – 544, 2004.
  3. D.E. Aylor. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology, 84(8):1989–1997, 2003.
  4. J.K.J Brown and M.S. Hovmoller. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297:537–541, 2002.
  5. Patrick E. Brown, Florencia Chimard, Alexander Remorov, Jeffrey S. Rosenthal, and Xin Wang. Statistical inference and computational efficiency for spatial infectious disease models with plantation data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2013.
  6. M. L. Cain, G.M. Brook, and E. S. Allan. Long-distance seed dispersal in plant populations. American Journal of Botany, 87(9):1217–1227, 2000.
  7. Stephen Catterall, Alex R. Cook, Glenn Marion, Adam Butler, and Philip E. Hulme. Accounting for uncertainty in colonisation times: a novel approach to modelling the spatiotemporal dynamics of alien invasions using distribution data. Ecography, 35(10):901–911, 2012.
  8. A. Cook, G. Marion, A. Butler, and G.J. Gibson. Bayesian inference for the spatio-temporal invasion of alien species. Bulletin of Mathematical Biology, 69:2005–2025, 2007.
  9. A. Cook, W. Otten, G. Marion, G.J. Gibson, and C.A. Gilligan. Estimation of multiple transmission rates for epidemics in heterogeneous population. PNAS, 104(51):20392–20397, 2007.
  10. Noel Cressie and Christopher K. Wikle. Statistics for Spatio- Temporal Data. Wiley, 2011.
  11. D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer, 2nd Ed., New York, 2003.
  12. M.L. Desprez-Loustau, C. Robin, M. Buee, R. Courtecuisse, J. Garbaye, F. Suffert, I. Sache, and Rizzo D.M. The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22(9):472–80, 2007.
  13. J.A.N. Filipe,W. Otten, G.J. Gibson, and C.A. Gilligan. Inferring the dynamics of a spatial epidemic from time-series data. Bulletin of Mathematical Biologyy, 66:373–391, 2004.
  14. Joao A. N. Filipe, Richard C. Cobb, Ross K. Meentemeyer, Christopher A. Lee, Yana S. Valachovic, Alex R. Cook, David M. Rizzo, and Christopher A. Gilligan. Landscape epidemiology and control of pathogens with cryptic and longdistance dispersal: Sudden oak death in northern californian forests. PLoS Comput Biol, 8(1):e1002328, January 2012.
  15. Matthew C. Fisher, Daniel. A. Henk, Cheryl J. Briggs, John S. Brownstein, Lawrence C. Madoff, Sarah L. McCraw, and Sarah J. Gurr. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393):186–194, April 2012.
  16. Andrew Gelman, Donald B Rubin, et al. Inference from iterative simulation using multiple sequences. Statistical science, 7(4):457–472, 1992.
  17. G.J. Gibson, A. Kleczkowski, and C.A. Gilligan. Bayesian analysis of biotanical epidemics using stochastic compartmental models. PNAS, 101(33):12120–12124, 2004.
  18. G.J. Gibson,W. Otten, J.A.N. Filipe, A. Cook, G. Marion, and C.A. Gilligan. Bayesian estimation for percolation models of disease spread in plant population. Stat Comput, 16(51):391– 402, 2006.
  19. G.J. Gibson, G. Streftaris, and S. Zachary. Generalised data augmentation and posterior inferences. Journal of statistical planning and inference, 141:156–171, 2010.
  20. M. Guzm´an, L. P´erez-Vicente, J. Carlier, C. Abadie, L. de Lapeyre de Bellaire, F. Carreel, D.H. Marin, R.A. Romero, F. Gauhl, C. Pasberg-Gauhl, and D.R.. Jones. Handbook of diseases of banana, abaca and enset, chapter Black leaf streak. CABI Publishing [New York], 2018.
  21. F. M. Hamelin, F. Castella, V. Doli, Marc¸ais B., V. Ravign´e, and M.A. Lewis. Mate finding, sexual spore production, and the spread of fungal plant parasites. Bulletin of Mathematical Biology, 78(4):695–712, 2016.
  22. F. Hartig, J.M. Calabrese, B. Reineking, T. Wiegand, and A. Huth. Statistical inference for stochastic simulation models - theory and application. Ecology Letters, 14:816–827, 2011.
  23. Jennifer A. Hoeting, Molly Leecaster, and David Bowden. An improved model for spatially correlated binary responses. Journal of Agricultural, Biological, and Environmental Statistics, 5(1):102–114, 2000.
  24. R Ioos, J. Hubert, C. Abadie, D. Duf´eal, G. Opdebeeck, and J. Iotti. First report of black sigatoka disease in banana caused by mycosphaerella fijiensis on Martinique island. Plant Disease, 95(3):359–359, 2011.
  25. D. J. Levey, J. J. Tewksbury, and B. M. Bolker. Modelling long-distance seed dispersal in heterogeneous landscapes. Journal of Ecology, 96:599–608, 2008.
  26. Jed A. Long, Colin Robertson, Farouk S. Nathoo, and Trisalyn A. Nelson. A bayesian space time model for discrete spread processes on a lattice. Spatial and Spatio-temporal Epidemiology, 3(2):151–162, 2012.
  27. Douglas H. Marin, Ronald A. Romero, Mauricio Guzman, and Turner B. Sutton. Black sigatoka: An increasing threat to banana cultivation. Plant Disease, 87(3):208–222, March 2003.
  28. A. Marrel, B. Ioos, S. Da Veiga, and M. Ribatet. Global sensitivity analysis of stochastic computer models with joint metamodels. Stat Comput, 22:833–847, 2012.
  29. Trevelyan J. McKinley, Joshua V. Ross, Rob Deardon, and Alex R. Cook. Simulation-based bayesian inference for epidemic models. Computational Statistics and Data Analysis, 71:434 – 447, 2014.
  30. N. Mollentze, L.H. Nel, Sunny Townsend, Kevin le Roux, Katie Hampson, DT Haydon, and Samuel Soubeyrand. A bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proceedings of the Royal Society of London. Series B: Biological Sciences., 281(1782), 2014.
  31. Marco J. Morelli, Gaell Th´ebaud, Joel Chadoeuf, Donald P. King, Daniel T. Haydon, and Samuel Soubeyrand. A bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput Biol, 8(11), 11 2012.
  32. P.D. O’Neill. A tutorial introduction to bayesian inference for stochastic epidemics models using Markov chain mote carlo methods. Mathematical Biosciences, 180:103–114, 2002.
  33. S. Parnell, T. R. Gottwald, C. A. Gilligan, N. J. Cunniffe, and F. van den Bosch. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. Phytopathology, 100(7):638–644, 2010.
  34. Elizabeth Pennisi. Armed and dangerous. Science, 327(5967):804–5, 2010.
  35. Randy C. Ploetz, Gert H.J. Kema, and Li-Jun Ma. Impact of diseases on export and smallholder production of banana. Annual Review of Phytopathology, 53(1):269–288, 2015.
  36. A. Rieux, S Soubeyrand, F. Bonnot, E. K. Klein, J. E. Ngando, A. Mehl, V Ravign´e, Carl, and L. de Lapeyre de Bellaire. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. Plos One, 2014.
  37. C.P. Robert and G Casella. Monte Carlo Statistical Methods. second ed. Springer, 2010.
  38. S. Robert, V. Ravign´e, M-F. Zapater, C. Abadie, and J. Carlier. Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen mycosphaerella fijiensis. Molecular Ecology, pages 11–12, 2012.
  39. A. Saltelli, S. Tarantola, and K.P.S. Chan. A quantitative model independent method for global sensitivity analysis of model output. Technometrics, 41:39–56, 1999.
  40. Z. Shi-Mai and Y. Luo. Long-distance spread and interregional epidemics of wheat stripe rust in China. The American Phytopathological Society, Plant Disease, 90(8):980– 988, 2008.
  41. S. Soubeyrand, A.L. Laine, I. Hanski, and A. Penttinen. Spatiotemporal structure of host-pathogen interactions in a metapopulation. The American Naturalist, 174(3), 2009.
  42. J Vaillant, G Puggioni, L.A.Waller, and J Daugrois. A spatiotemporal analysis of the spread of suger cane yellow leaf virus. Journal of time series analysis, 2010.
  43. David M. Walker, F. Javier Perez-Barberia, and Glenn Marion. Stochastic modelling of ecological processesusing hybrid gibbs samplers. Ecological Modelling, 198:40 – 52, 2006.

Keywords

Stochastic process, Likelihood, MCMC, Bayesian inference, Data augmentation, BLSD