CFP last date
20 May 2024
Reseach Article

Plasmonic Optical Fiber Sensors using Different Nanoparticles

by Ranjit Singh, Sanjeev Dewra and
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Number 20
Year of Publication: 2018
Authors: Ranjit Singh, Sanjeev Dewra and
10.5120/ijca2018916358

Ranjit Singh, Sanjeev Dewra and . Plasmonic Optical Fiber Sensors using Different Nanoparticles. International Journal of Computer Applications. 179, 20 ( Feb 2018), 27-30. DOI=10.5120/ijca2018916358

@article{ 10.5120/ijca2018916358,
author = { Ranjit Singh, Sanjeev Dewra and },
title = { Plasmonic Optical Fiber Sensors using Different Nanoparticles },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2018 },
volume = { 179 },
number = { 20 },
month = { Feb },
year = { 2018 },
issn = { 0975-8887 },
pages = { 27-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume179/number20/28986-2018916358/ },
doi = { 10.5120/ijca2018916358 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:55:59.290924+05:30
%A Ranjit Singh
%A Sanjeev Dewra and
%T Plasmonic Optical Fiber Sensors using Different Nanoparticles
%J International Journal of Computer Applications
%@ 0975-8887
%V 179
%N 20
%P 27-30
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper present an investigation on Localized Surface Plasmon based optical fiber sensor and comparative performance of design with nanoparticles of different material on the tip of fiber. It is found that the Silver nanoparticles have higher sensitivity of 300nm/RIU and 10.7 figure of merit when refractive index of surrounding varies from 1.33 to 1.36. Whereas the copper and aluminum has the sensitivity of 133nm, 333nm, figure of merit of 2.7 and 8.1 respectively. It is also observed that the Surface Plasmon Resonance curve of silver nanoparticles has narrow width which improves the detection of accuracy as compared to copper and aluminum.

References
  1. Singh R., Dewra S. and Rani A. 2016 Review on Performance of Optical Sensor based on different Nano particles in fiber. International Journal of Computer Science and Network.pp 102-107.
  2. Gent J. v., Lambeck P. V. and Kreuwel H. J. M. 1990. Optimization of a chemooptical surface plasmon resonancebased sensor. Applied Optics. vol. 29. pp. 2843–2849.
  3. Stenberg E., Persson B., Roos H., and Urbaniczky C. 1991.Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins.Journal of Colloid and Interface Science.vol. 143.no. 2.pp. 513–526.
  4. Dougherty G. 1993.A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance. Measurement Science and Technology. vol. 4.no. 6. pp. 697–699.
  5. Ekgasit S., Tangcharoenbumrungsuk A., Yu F., Baba A., and Knoll W.2005.Resonance shifts in SPR curves of nonabsorbing.weakly absorbing, and strongly absorbing dielectrics.Sensors and Actuators B.vol. 105.no. 2.pp. 532–541.
  6. Chyou J.-J., Chu C.-S., Chien F.-C., et al. 2006.Precise determination of the dielectric constant and thickness of a nanolayer by use of surface plasmon resonance sensing and multiexperiment linear data analysis.Applied Optics.vol. 45.no. 23. pp.6038–6044.
  7. Chiang H. P., Chen C.-W., Wu J. J., et al. 2007.Effects of temperature on the surface plasmon resonance at a metalsemiconductor interface.Thin Solid Films.vol. 515. no. 17. pp. 6953–6961.
  8. Person J. L., Colas F., Compere C., et al. 2008.Surface plasmon resonance in chalcogenide glass-based optical system. Sensors and Actuators B. vol. 130. no. 2. pp. 771–776.
  9. Feng W., Shenye L., Xiaoshi P., Zhuangqi C., and Yongkun D.2008.Reflective-type configuration for monitoring the photobleaching procedure based on surface plasmon resonance. Journal of Optics A. vol. 10. no. 9. Article ID 095102.
  10. Jorgenson, R.C.; Yee, S.S.1993.A fiber-optics chemical sensor based on surface Plasmon resonance. Sens Actuators B (1993).12.213–220.
  11. Ashry I, Elrashidi A, Tharwat MM, Xu Y, Mahros AM, 2015 . Investigating the optical transmission spectra of plasmonic spherical nano-hole arrays.Plasmonics 10:511–517.
  12. Mahros AM, Tharwat MM, 2015.Investigating the fabrication imperfection ofplasmonic nano-hole arrays and its effect on the optical transmission spectra.J Nanomater (2015):178583.
  13. Jorgenson R. C. and Yee S. S., 1993. A fiber-optic chemical sensor based on surface plasmon resonance.Sensors and Actuators B.vol. 12.no. 3.pp. 213–220.
  14. Harris R. D. and Wilkinson J. S., 2000. Waveguide surface plasmon resonance sensors.Sensors and Actuators B. vol. 29. no. 1–3. pp. 261–267.
  15. Lin W. B., Jaffrezic-Renault N., Gagnaire A., and Gagnaire H., 2000.The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sensors and Actuators A. vol. 84. no. 3. pp. 198–204.
  16. Slav’ık R., Homola J., Ctyrok’y J., and Brynda E., 2001. Novel spectral fiber optic sensor based on surface plasmon resonance. Sensors and Actuators B. vol. 74. no. 1–3. pp. 106–111.
  17. Piliarik M., Homola J., Man’ıkov’a Z., and Ctyrok’y J.,2003 .Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber.Sensors and Actuators B.vol. 90. no. 1–3. pp. 236–242.
  18. Gentleman D. J., Obando L. A., Masson J.-F., Holloway J. R., and Booksh K. S., 2004.Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems.Analytica Chimica Acta.vol. 515. no. 2. pp. 291–302.
  19. Teotia P. K., Kaler R.S., 2016. Multilayer with periodic grating based high performance SPR waveguide sensor. Optics Communications (2016).
  20. Jia, P., Yang, J. , 2015 Universal sensitivity of propagating surface plasmon resonance in nanostructure arrays. Opt. Express, 23, 18658–18664.
  21. Ortega-Mendoza J. G. , Padilla-Vivanco A. , Toxqui-Quitl C. , Zaca- Morán P. , Villegas Hernández D. and Chávez F.,2014.Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End.Sensors, 14.18701-18710.
  22. Rakić A.D., Djurišić A.B., Elazar J.M. and Majewski M.L. 1998. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5272–5283.
Index Terms

Computer Science
Information Sciences

Keywords

Optical fiber sensor nano-particles refractive index Surface Plasmon Resonance.