Optimal Bidding Strategy for Profit Maximization of Generation Companies based on Whale Optimization Algorithm in Day Ahead Market

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 179
Number 38

Year of Publication: 2018

Authors:
Kavita Jain, Tanuj Manglani

Abstract

In a deregulated electricity market, the aim of generating companies (GENCOs) is to maximize their profit by bidding optimally in the day-ahead market, under incomplete information of the competitors. This paper proposes a methodology to acquire the optimal bidding strategy of thermal GENCO in a uniform price spot market as a precise model of nonlinear operating cost function and minimum up/down constraints of unit commitment. Rivals bidding behavior is described using different probability distribution functions: normal, lognormal, gamma and weibull probability distribution function. Bidding strategy of a generator for each trading period in a day-ahead market is solved by whale optimization algorithm (WOA). WOA can dynamically monitor the repeatedly varying market demand and supply in each trading interval. This paper explores the effectiveness of the proposed algorithm with different probability functions to obtain optimal bid quantities and prices and compare the results.

References


20. D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economic dispatch with
22. E. S. Huse, I. Wangensteen, and H. H. Faanes, “Thermal power generation scheduling
23. Prateek Sharma, Akash Saxena, Bhanu Pratap Soni, Rajesh Kumar and Vikas Gupta
“An Intelligent Energy Bidding Strategy based on Opposition Theory Enabled Grey Wolf
Optimizer” PICC2018(IEEE Power, Instrumentation, Control and computing) at Government
Maximization of Generation Companies under Step-Wise Bidding Protocol” International Journal

Index Terms

Computer Science Algorithms

Keywords

Electricity market, bidding strategies, whale optimization algorithm (WOA), Monte Carlo (MC)
simulation, probability distribution