Abstract

Human activity recognition (HAR) has given a lot of attention in the recent years due to the need of high level context about the human activities in several applications. Many domains have attempted to overcome the lack of performance techniques used to collect raw data such as cameras to record or capture activities and inertial sensor units to record correct readings. As a result, few studies have regarded to acquire raw data and extract features instead of understanding, recognizing, inferring, and predicting human activities in future to obtain recommendations or detecting healthcare, daily, and educational positions to humans. This paper aims to analyze the performance of Neural Network (NN) and Deep Neural Network (DNN) for HAR. To achieve this aim, we select Daily and Sports Activities data set (DSA) to match paper's needs. This paper depends on NN and DNN based on softmax
function. We form three sets of DSA dataset: small, medium, and large. The results showed
that DNN based on softmax function reduce the computational cost than NN, increase the
performance of network, and achieved high overall successful differentiation rate in testing on
large dataset (97.74%) than on medium dataset (67.81%). or on small dataset (67.63%).

References

Conference on Ubiquitous Computing (pp. 1036-1043). ACM.
on Dynamic Clustering of Skeleton Data. Sensors, 17(5), 1100.
3. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., ukhellou, L., & Amirat, Y.
Symmetric and Asymmetric Bimanual Eating Detection with Inertial Sensors on the Wrist. In
Proceedings of the 1st Workshop on Digital Biomarkers (pp. 21-26). ACM.
source machine learning environments using body-worn sensor units. The Computer Journal,
57(11), 1649-1667.
using smartphone accelerometer data and exploration of predicted results. Computers,
(2016). Performance of activity classification algorithms in free-living older adults. Medicine and
science in sports and exercise, 48(5), 941.
algorithm on smartphone with tri-axial accelerometer. International Journal of Informatics
Models and Analysis (IJIMA), ITHEA International Scientific Society, Bulgaria, 1, 146-156.
and neural networks for human activity recognition. In Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), 2016 12th International Conference on (pp. 1141-1146).
IEEE.
recognition using a Bayesian network-based probabilistic generative framework. Pattern
Recognition, 68, 295-309.
based on Decision tree. In Advanced Cloud and Big Data (CBD), 2013 International Conference
on (pp. 64-68). IEEE.
non-parametric and fuzzy logic-based classification in recognition of human daily activities. Biomedical Engineering: Applications, Basis and Communications, 29(01), 1750003.

Index Terms

Computer Science Artificial Intelligence

Keywords

Human Activity Recognition (HAR), Neural Network (NN), Deep Neural Network (DNN).