CFP last date
22 April 2024
Reseach Article

Efficient 5G Communication System using Random Access Block Interleaving with ETU Channel

by Fakeha Khan, Amit Saxena
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 31
Year of Publication: 2018
Authors: Fakeha Khan, Amit Saxena
10.5120/ijca2018916798

Fakeha Khan, Amit Saxena . Efficient 5G Communication System using Random Access Block Interleaving with ETU Channel. International Journal of Computer Applications. 180, 31 ( Apr 2018), 12-16. DOI=10.5120/ijca2018916798

@article{ 10.5120/ijca2018916798,
author = { Fakeha Khan, Amit Saxena },
title = { Efficient 5G Communication System using Random Access Block Interleaving with ETU Channel },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2018 },
volume = { 180 },
number = { 31 },
month = { Apr },
year = { 2018 },
issn = { 0975-8887 },
pages = { 12-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number31/29241-2018916798/ },
doi = { 10.5120/ijca2018916798 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:02:20.812476+05:30
%A Fakeha Khan
%A Amit Saxena
%T Efficient 5G Communication System using Random Access Block Interleaving with ETU Channel
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 31
%P 12-16
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This work investigates an uplink multiple access technique with Interleave Division Multiple Access using Random Interleaving and Extended Typical Urban (ETU) channel model. The crucial requirement is a better Bit-Error Rate performance of the proposed system. The article analyzes and compares the performance of proposed system, taking different block lengths and a different number of subscribers, against that SUI. The simulation results show that with an increase in block length, the performance of random access block interleaving with the SUI channel we see that SUI performs better then AWGN channel.

References
  1. B. Wang, K. Wang, Z. Lu, T. Xie and J. Quan, "Comparison study of non-orthogonal multiple access schemes for 5G," 2015 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Ghent, 2015, pp. 1-5.
  2. T. Y. Tseng, C. P. Lee, S. C. Lin and H. J. Su, "Non-orthogonal compute-and-forward with joint lattice decoding for the multiple-access relay channel," 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014, pp. 924-929.
  3. A. Benjebbour, A. Li, Y. Kishiyama, H. Jiang and T. Nakamura, "System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements," 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014, pp. 706-710.
  4. S. Zhang, X. Xu, L. Lu, Y. Wu, G. He and Y. Chen, "Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems," 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 4782-4787.
  5. X. Chen, A. Benjebbour, A. Li and A. Harada, "Multi-User Proportional Fair Scheduling for Uplink Non-Orthogonal Multiple Access (NOMA)," 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, 2014, pp. 1-5.
  6. H. Osada, M. Inamori and Y. Sanada, "Non-Orthogonal Access Scheme over Multiple Channels with Iterative Interference Cancellation and Fractional Sampling in MIMO-OFDM Receiver," 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, 2013, pp. 1-5.
  7. Ding, Z., Adachi, F., & Poor, H. (2016). The Application of MIMO to Non-Orthogonal Multiple Access. IEEE Transactions On Wireless Communications, 75(1), 537-552.
  8. L. Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave-Division Multiple-Access,” IEEE Trans. Wirel. Commun., vol. 5, no. 4, pp. 938–947, 2006.
  9. L. Ping, “Interleave-Division Multiple Access and Chip-by-Chip Iterative Multi-User Detection,” IEEE Commun. Mag., vol. 43, no. 6, pp. S19–S23, 2005.
  10. M. Moher and P. Guinand, “An iterative algorithm for asynchronous coded multiuser detection,” IEEE Commun. Lett., vol. 2, no. 8, pp. 229–231, 1998.
  11. A. Tarable, G. Montorsi, and S. Benedetto, “Analysis and design of interleavers for CDMA systems,” IEEE Commun. Lett., vol. 5, no. 10, pp. 420–422, 2001.
  12. S. Bruck, U. Sorger, S. Gligorevic, and N. Stolte, “Interleaving for outer convolutional codes in DS-CDMA systems,” IEEE Trans. Commun., vol. 48, no. 7, pp. 1100–1107, 2000.
  13. R. Jain, “Channel Models - A Tutorial,” 2007. [Online]. Available: http://www.cse.wustl.edu/~jain/wimax/ftp/channel_model_tutorial.pdf. [Accessed: 16-Jun-2016].
  14. S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Commun. Mag., vol. 34, no. 10, pp. 124–135, 1996.
  15. L. L. L. Liu, W. K. Leung, and L. P. L. Ping, “Simple iterative chip-by-chip multiuser detection for CDMA systems,” 57th IEEE Semiannu. Veh. Technol. Conf. 2003. VTC 2003-Spring., vol. 3, no. 4, pp. 2157–2161, 2003.
  16. H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, and G. Nebe, “Interleaver design for turbo codes,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 831–837, 2001.
Index Terms

Computer Science
Information Sciences

Keywords

Random access block interleaving ETU Block length BER